# 8000B Series Inverter User Manual



Website: http://www.we-con.com.cn/en Technical Support: <u>support@we-con.com.cn</u> Skype: fcwkkj Phone: 86-591-87868869 QQ Group: 465230233 Technical forum: <u>http://wecon.freeforums.net/</u>

## Preface

First of all, thank you for purchasing 8000B Series Enhanced AC Drive!

This user manual introduces how to use 8000B series variable frequency drives (VFDs) properly. Please read this user manual carefully before carrying out works such as installation, commissioning, maintenance, etc.

Improper usage of VFDs would result in unpredictable accident, please deliver this user manual to your end user. At the same time, please use VFDs until completely understands safety instructions.

#### Attentions:

Illustrations in this user manual are for the convenience of understanding by user, and it might be a bit different to the product you have purchased. As most of the illustrations are showing the condition of VFD product with cover or safety guard removed, please note that cover or safety guard must be installed back as required, then operate strictly according to this user manual.

WECON always continually improve the products, all technical parameters are subject to change without notice. It would be possible that the old version manual is inconformity to the new products you received. Please always use the user manual which is included in the same package of product. If the user manual is lost or damaged, or there are problems or doughts, please ring the hotline of service center of WECON Company on +86-591-87868869.

## CONTENTS

| Preface                                       | - 1 -  |
|-----------------------------------------------|--------|
| SAFETY INSTRUCTION                            | 5 -    |
| Manual Conventions                            | 9 -    |
| Chapter 1 Introduction to the 8000B series VF | D 10 - |
| 1.1 Model Description                         | 10 -   |
| 1.2 Namplate Example                          | 10 -   |
| 1.3 Table of 8000B series Drives              | 11 -   |
| 1.4 Specifications                            | 12 -   |
| 1.5 Dimensions and Sizes                      | 15 -   |
| 1.6 Model Size & Dimensions Table             | 18 -   |
| 1.7 Dimensions of Extension Keyboard          | 19 -   |
| 1.8 Braking Resistor Selection Table          | - 20 - |
| Chapter 2 Installation and Wiring             | 21 -   |
| 2.1 Installation                              | - 21 - |
| 2.2 Wiring                                    | 27 -   |
| Chapter 3 Keypad Operation                    | - 38 - |
| 3.1 Keypad Operation                          | - 38 - |
| 3.2 Operation Details                         | 39 -   |
| Chapter 4 Function Parameter Table            | 44 -   |
| 4.1 Symbol Conventions:                       | 44 -   |
| 4.2 Function Parameter Table                  | 44 -   |

| Chapter 5 Function Parameter Description 77 -                      |
|--------------------------------------------------------------------|
| 5.1 F0 Group—Basic Function 77 -                                   |
| 5.2 F1 Group: Start and Stop Parameters 89 -                       |
| 5.3 F2 Group: Motor Parameters 94 -                                |
| 5.4 F3 Group: Vector Control Parameters 97 -                       |
| 5.5 F4 Group: V/F Control Parameters 100 -                         |
| 5.6 F5 Group Input Terminals Parameters 105 -                      |
| 5.7 F6 Group Output Terminals Parameters 116 -                     |
| 5.8 F7 Group Display Interface Parameters 122 -                    |
| 5.9 F8 Group Auxiliary Function Parameters 125 -                   |
| 5.10 F9/FE Group PID Control Parameters 132 -                      |
| 5.11 FA Group Protection Parameters and Fault Records 143 -        |
| 5.12 FB Group Swing Frequency and Counting Meter Parameters- 149 - |
| 5.13 FC Group RS485 Communication Parameters 152 -                 |
| 5.14 FD Group Multi-step Speed and Simple PLC Parameters 155 -     |
| Chapter 6 Trouble Shooting 158 -                                   |
| 6.1 Fault and Trouble Shooting 158 -                               |
| 6.2 Common Faults and Solutions 161 -                              |
| Chapter 7 EMC 163 -                                                |
| 7.1 Definition 163 -                                               |
| 7.2 Introduction to EMC Standard 163 -                             |
| 7.3 EMC Guideline 163 -                                            |
| Chapter 8 Communication Protocol 167 -                             |
| 8.1 Communication Interface 167 -                                  |
| 8.2 Communication Modes 167 -                                      |

| 8.3 Frame Format                        | 167 - |
|-----------------------------------------|-------|
| 8.4 Protocol Function                   | 168 - |
| 8.5 Note                                | 173 - |
| 8.6 CRC Checksum                        | 174 - |
| 8.7 Example                             | 175 - |
| 8.8 Data Address Table of Function Code | 177 - |

## SAFETY INSTRUCTION

Read this user manual thoroughly before installation, operation, maintenance or inspection of the variable frequency drive (VFD). In this manual, safety instructions are classified as "WARNING" or "CAUTION".

A WARNING: Indicate a potentially dangerous situation which, if not avoided, can result in death or serious injury to personnel.

CAUTION: Indicate a potentially dangerous situation which, if not avoided, can result in minor or moderate injury and damage to equipment. It may also be used for warning against unsafe practices.

Even items described as ( CAUTION) may result in a vital accident in some situations. Please follow these important notes:

#### Checking Before installation

<sup>©</sup> Do not install or operate any VFD that is damaged or has missing parts. Failing to follow this rule can result in facility damage or severe injury.

#### Installation

 $\bigcirc$  When installing or handling the VFD, please hold the bottom of the product otherwise its case only, thus prevent its falling and being damaged.

©Install the VFD on nonflammable material like metal, and keep away from flammable or explsive object, heat source, and such environment. Otherwise it may cause a fire.

<sup>©</sup>Make sure that the mounting environment free of metal dust. Otherwise it may cause damage to the VFD.

<sup>©</sup>When VFDs is installed inside an electrical cabinet or other kind of enclosure, please install fans or other cooling devices, and keep ventilation well enough to ensure the enclosure temperature below 40°C, or the VFD may be damaged due to extreme high rise of temperature.

#### Wiring

| A                                                                                                 |  |  |
|---------------------------------------------------------------------------------------------------|--|--|
| $\bigotimes$                                                                                      |  |  |
| ©Ensure only qualified electrical engineering personnel for wiring work . Otherwise it            |  |  |
| can cause an electrical shock or damage to the VFD.                                               |  |  |
| <sup>©</sup> Make sure VFD is isolated from power supply by the circuit breaker. Otherwise it may |  |  |
| cause electrical shock or a fire.                                                                 |  |  |
| <sup>©</sup> Make sure that the ground terminal is grounded correctly. Otherwise it may cause     |  |  |
| an electrical shock.                                                                              |  |  |
| ©Do not touch the main circuit terminals, and keep the wiring of VFD main terminals               |  |  |
| from contacting to the enclosure, or it can cause electrical shock.                               |  |  |
| © Terminals for brake resistor are (+) and PB. Do not wire to other terminals, otherwise          |  |  |
| will cause a fire.                                                                                |  |  |
|                                                                                                   |  |  |
| <u>_</u>                                                                                          |  |  |
| <sup>©</sup> Before wiring, ensure the VFD's rated input voltage and phases is compatible to the  |  |  |
| input power source, or it can cause a fire or personal injury.                                    |  |  |
| ©Never connect the AC power supply to output terminals U, V and W. Otherwise the                  |  |  |
| VFD will be damaged and the guarantee is voided.                                                  |  |  |

 $\odot$ Never carry out withstand voltage test to the VFD, for example by a megohm meter. Otherwise it may cause damage to the VFD.

 $\bigcirc$  VFDuse damage to the t guand control circuit wiring should be separated, or run vertically from each other. Otherwise it may cause interference to the control signals.

 $\ensuremath{\mathbb{O}}\xspace$  Main circuit wiring cable leads should be crimped with cable lugs in insulated sleeve.

 $\bigcirc$ If the cable length between the VFD and the motor is greater than 50 meters, it is recommended to use an output reactor to protect the VFD and the motor.

#### Operating

 $\bigcirc$  It is only allowed to power on the VFD after the wirng is finished and its cover is reinstalled. It is strictly prohibit to remove the cover of VFD while power is on, otherwise it may cause electric shock.

<sup>©</sup>Before programming a VFD with fault auto reset or restart option after power off, the mechanical device need to be implemented with safety measures first, otherwise it can lead to personal injury.

©"STOP/RESET" key may become invalid as a result of some function setting. It is recommended to install an independent emergency circuit breaker for the VFD control system, otherwise it may result in personal injury.

© When the power is on, the VFD's terminals may have electricity also even if it is in stop mode. Do not touch U, V, W terminals and motor connection terminals. Otherwise it may cause an electrical shock.

© Do not use a magnetic contactor to control the start and stop of the VFD. Otherwise it may cause the VFD to be damaged.

<sup>©</sup>Before starting, please make sure that the motor and mechanical device can be run with the VFD's accelerating time setting in their safe range. Otherwise may result in device damage.

<sup>©</sup> Do not touch the heat sink or braking resistor. Otherwise it may cause harmful burns to the body.

©Never modify the parameters casually in unnecessary conditions, as the VFD's default parameter setting has already meet the requirements of most mechanical devices. Even if some devices have special requirements, it is only needed to modify some necessary parameters. Otherwise, it may cause device damage by improper parameter modification.

#### Maintenance

©Never touch the VFD the connection terminals when power is on. Otherwise it may cause an electrical shock.

◎Only qualified electrical engineering personnal can be authorized to do the jobs of maintenance, checking, or parts replacement.

◎After the power supply is OFF, make sure the charge LED is OFF, the residual voltage is not exist, or wait at least 10 minutes, before carrying out maintenance or inspection. Otherwise it may cause damage or injury.

© PCB has CMOS integrated circuit parts, never touch with bare hand, or static electricity may cause damage to the PCB.

#### Other

<sup>©</sup>Modification to the VFD without permission is strictly prohibited, otherwise can cause severe injury. Arbitrarily modification of VFD will result in service guarantee voided.

## **Manual Conventions**

In this manual we refer to 8000B Series Variable Frequency Drives as: drive, inverter, VFD, 8000B, 8000B drive, AC drive or 8000B Series Enhanced AC Drive.

## Chapter 1 Introduction to the 8000B series VFD

## **1.1 Model Description**



## 1.2 Namplate Example



## 1.3 Table of 8000B series Drives

| Drive Model G/P        | Rated Output<br>Power kW | Rated Input<br>Current A | Rated Output<br>Current A | Motor Power<br>kW G/P |  |  |  |
|------------------------|--------------------------|--------------------------|---------------------------|-----------------------|--|--|--|
|                        | Single-phase 220V±15%    |                          |                           |                       |  |  |  |
| 8000B-2SR75GB          | 0.75                     | 8.2                      | 4.5                       | 0.75                  |  |  |  |
| 8000B-2S1R5GB          | 1.5                      | 14.2                     | 7                         | 1.5                   |  |  |  |
| 8000B-2S2R2GB          | 2.2                      | 23                       | 10                        | 2.2                   |  |  |  |
|                        | Three-phase              | 380V±15%                 |                           |                       |  |  |  |
| 8000B-4TR75GB          | 0.75                     | 3.4                      | 2.5                       | 0.75                  |  |  |  |
| 8000B-4T1R5GB          | 1.5                      | 5                        | 3.7                       | 1.5                   |  |  |  |
| 8000B-4T2R2GB          | 2.2                      | 5.8                      | 5.0                       | 2.2                   |  |  |  |
| 8000B-4T004GB/4T5R5PB  | 4/5.5                    | 10/15                    | 9/13                      | 4/5.5                 |  |  |  |
| 8000B-4T5R5GB/4T7R5PB  | 5.5/7.5                  | 15/20                    | 13/17                     | 5.5/7.5               |  |  |  |
| 8000B-4T7R5GB          | 7.5                      | 20                       | 17                        | 7.5                   |  |  |  |
| 8000B-4T011GB/4T015PB  | 11/15                    | 26/35                    | 25/32                     | 11/15                 |  |  |  |
| 8000B-4T015GB/4T18R5PB | 15/18.5                  | 35/38                    | 32/37                     | 15/18.5               |  |  |  |
| 8000B-4T18R5GB         | 18.5                     | 38                       | 37                        | 18.5                  |  |  |  |
| 8000B-4T022G/4T030P    | 22/30                    | 46/62                    | 45/60                     | 22/30                 |  |  |  |
| 8000B-4T030G/4T037P    | 30/37                    | 62/76                    | 60/75                     | 30/37                 |  |  |  |
| 8000B-4T037G           | 37                       | 76                       | 75                        | 37                    |  |  |  |
| 8000B-4T045G/4T055P    | 45/55                    | 90/105                   | 90/110                    | 45/55                 |  |  |  |
| 8000B-4T055G/4T075P    | 55/75                    | 105/140                  | 110/150                   | 55/75                 |  |  |  |
| 8000B-4T075G/4T093P    | 75/93                    | 140/160                  | 150/176                   | 75/93                 |  |  |  |
| 8000B-4T093G/4T110P    | 93/110                   | 160/210                  | 176/210                   | 93/110                |  |  |  |
| 8000B-4T110G           | 110                      | 210                      | 210                       | 110                   |  |  |  |
| 8000B-4T132G/4T160P    | 132/160                  | 240/290                  | 250/300                   | 132/160               |  |  |  |
| 8000B-4T160G/4T185P    | 160/185                  | 290/330                  | 300/340                   | 160/185               |  |  |  |
| 8000B-4T185G           | 185                      | 330                      | 340                       | 185                   |  |  |  |
| 8000B-4T200G/4T220P    | 200/220                  | 370/410                  | 380/415                   | 200/220               |  |  |  |
| 8000B-4T220G/4T250P    | 220/250                  | 410/460                  | 415/470                   | 220/250               |  |  |  |

| 8000B-4T250G/4T280P | 250/280 | 460/500 | 470/520 | 250/280 |
|---------------------|---------|---------|---------|---------|
| 8000B-4T280G/4T315P | 280/315 | 500/580 | 520/600 | 280/315 |
| 8000B-4T315G        | 315     | 580     | 600     | 315     |
| 8000B-4T350G        | 350     | 620     | 640     | 350     |
| 8000B-4T400G        | 400     | 670     | 690     | 400     |

## **1.4 Specifications**

| Control Characteristics          |                                                                                                                                                                                                                  |               |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| Control Mode                     | SVC(Sensorless vector control)                                                                                                                                                                                   | V/F control   |  |  |
| Starting Torque                  | 0.5Hz 150% 0.5Hz 100%                                                                                                                                                                                            |               |  |  |
| Speed Control Range              | 1:100                                                                                                                                                                                                            | 1:20          |  |  |
| Precision of Speed<br>Regulation | ±0.5%                                                                                                                                                                                                            | ±1.0%         |  |  |
| Overload Capacities              | Model G: 60 seconds at 150% rated current; one second at 180% rated current.<br>Model P: 60 seconds at 120% rated current; one second at 150% rated current.                                                     |               |  |  |
| V/F Curve Options                | Three options: Linear, Square and Multipoint.                                                                                                                                                                    |               |  |  |
| DC Injection Braking<br>Function | Braking start frequency:0.00~Max. frequency limit;<br>Braking time:0.1~50.0s;<br>Braking current:0~150% of rated current(model G); 0~100% of<br>rated current(model P);<br>Braking start waiting time:0.0~50.0s. |               |  |  |
| Jog Operation                    | Jog frequency range:0.00-max.frequency;<br>Accel./Decel. time of jog operation:0.1~3600s.                                                                                                                        |               |  |  |
| Accel./Decel. Time               | Accel./Decel. time range:0.1~3600s                                                                                                                                                                               |               |  |  |
| Torque Boosting                  | Manual setting:0.1~30.0%; Automati                                                                                                                                                                               | c setting:0.0 |  |  |
|                                  | Input & Output Characteristics                                                                                                                                                                                   | 3             |  |  |
| Start Frequency                  | 0.01~10Hz                                                                                                                                                                                                        |               |  |  |

| Rated Input Voltage                                                                                                                                                                            | 220V/380V ± 15%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rated Input Frequency                                                                                                                                                                          | 50/60Hz,fluctuation range:±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Frequency Reference<br>Resolution                                                                                                                                                              | Analog signals:max. frequency × 0.1%; Digital setting:0.01Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Output Voltage                                                                                                                                                                                 | 0:rated input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Output Frequency<br>Range                                                                                                                                                                      | 0.00~600Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                | Peripheral I/O Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Digital Input<br>Terminals                                                                                                                                                                     | 6 inputs (programmable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Analog Input<br>Terminals                                                                                                                                                                      | AVI:0~10V; ACI:0~10V or 0/4~20mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Relay Output                                                                                                                                                                                   | 1 relay output (programmable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Open Collector Output                                                                                                                                                                          | 1 channel (programmable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Analog Output                                                                                                                                                                                  | 0.75~2.2kW: FM:0~10V; AM:0/4~20mA<br>4~400kW: FM:0~10V; AM:0~10V / 0/4~20mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                | Basic Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Operating Command<br>Channels                                                                                                                                                                  | Basic Functions<br>Three channels:keyboard, control input terminals, serial<br>communication interface. These channels can be switched by several<br>methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Operating Command<br>Channels<br>Frequency References                                                                                                                                          | Basic Functions<br>Three channels:keyboard, control input terminals, serial<br>communication interface. These channels can be switched by several<br>methods.<br>Total 8 references including panel potential meter, UP/DOWN key<br>digital setting, communication and PID control, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Operating Command<br>Channels<br>Frequency References<br>Auxiliary Frequency<br>Reference                                                                                                      | Basic Functions           Three channels:keyboard, control input terminals, serial communication interface. These channels can be switched by several methods.           Total 8 references including panel potential meter, UP/DOWN key digital setting, communication and PID control, etc.           Total 2 auxiliary frequency references, can be used in frequency combination or adjustment,                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Operating Command<br>Channels<br>Frequency References<br>Auxiliary Frequency<br>Reference<br>Multi-step speed &<br>Simple PLC Function                                                         | Basic Functions           Three channels:keyboard, control input terminals, serial communication interface. These channels can be switched by several methods.           Total 8 references including panel potential meter, UP/DOWN key digital setting, communication and PID control, etc.           Total 2 auxiliary frequency references, can be used in frequency combination or adjustment,           16 steps multi-step speed control can be carried out by control input terminals or built-in simple PLC function.                                                                                                                                                                                                                                                                                                                     |
| Operating Command<br>Channels<br>Frequency References<br>Auxiliary Frequency<br>Reference<br>Multi-step speed &<br>Simple PLC Function<br>Built-in PID Function                                | Basic Functions           Three channels:keyboard, control input terminals, serial communication interface. These channels can be switched by several methods.           Total 8 references including panel potential meter, UP/DOWN key digital setting, communication and PID control, etc.           Total 2 auxiliary frequency references, can be used in frequency combination or adjustment,           16 steps multi-step speed control can be carried out by control input terminals or built-in simple PLC function.           Closed loop control of system variables such as pressure, speed or temperature can be carried out by a built-in Proportional + Integral + Derivative (PID) controller.                                                                                                                                    |
| Operating Command<br>Channels<br>Frequency References<br>Auxiliary Frequency<br>Reference<br>Multi-step speed &<br>Simple PLC Function<br>Built-in PID Function<br>Swing Frequency<br>Function | Basic Functions           Three channels:keyboard, control input terminals, serial communication interface. These channels can be switched by several methods.           Total 8 references including panel potential meter, UP/DOWN key digital setting, communication and PID control, etc.           Total 2 auxiliary frequency references, can be used in frequency combination or adjustment,           16 steps multi-step speed control can be carried out by control input terminals or built-in simple PLC function.           Closed loop control of system variables such as pressure, speed or temperature can be carried out by a built-in Proportional + Integral + Derivative (PID) controller.           Suitable for some textile and chemical fiber machines by programmble controlling of the triangular frequency references. |

|                                    | voltage constant when power supply is not stable.                                                                                                                                 |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Stall Prevention                   | Stall Prevention automatically control the decelerating procedure by<br>monitoring the bus voltage and prevent overvoltage fault caused by<br>high inertia or rapid deceleration. |  |  |  |
| Communication<br>Function          | RS485 communication with standard modbus protocol.                                                                                                                                |  |  |  |
| Automatic Energy<br>Saving Control | Automatic decrease output voltage while in the situation of light load, to achive efficient energy saving.                                                                        |  |  |  |
| Fault Protection<br>Function       | Over- cur rent , over vol tage, under- vol tage, over temperature, lack of phase, etc.                                                                                            |  |  |  |
|                                    | Personalized function                                                                                                                                                             |  |  |  |
| LED Display                        | 16 parameters can by displayed including running frequency, DC bus voltage, output voltage, output current, etc.                                                                  |  |  |  |
| Password Setting                   | Four-digits non zero password can be set and become effective after<br>exit the password programming mode and wait 1 minute.                                                      |  |  |  |
| Parameter Lock<br>Function         | This function can be used to lock the parameter when running or stop<br>in order to avoid wrong operation.                                                                        |  |  |  |
| Application Environment            |                                                                                                                                                                                   |  |  |  |
| Efficiency                         | At rated power<br>≥ 93% as 45kW and below;<br>≥ 95% as 55kW and above₀                                                                                                            |  |  |  |
| Location                           | Indoor away from sunlight, dust, corrosive gas, oil fog, driping water or condensation.                                                                                           |  |  |  |
| Elevation                          | 1000m or less                                                                                                                                                                     |  |  |  |
| Ambient Temperature                | -10°C ~+40°C                                                                                                                                                                      |  |  |  |
| Humidity                           | 95% RH or less                                                                                                                                                                    |  |  |  |
| Vibration                          | $< 5.9 \text{ m/s}^2(0.6\text{G})$                                                                                                                                                |  |  |  |

## **1.5 Dimensions and Sizes**

### **Dimensions Drawing**





0.75kW~2.2kW (model G)





4kW~7.5kW (model G)



132kW~185kW (model G)



200kW~250kW (model G)



280kW~400kW (model G)

## 1.6 Model Size & Dimensions Table

| Inverter Model         | Instal<br>Dime<br>(m | lation<br>nsions<br>m) | Appearance Dimensions (mm) |        | Hole<br>Diameter |       |       |      |
|------------------------|----------------------|------------------------|----------------------------|--------|------------------|-------|-------|------|
|                        | А                    | В                      | Н                          | H1     | W                | W1    | D     | (mm) |
| 8000B-2SR75GB          |                      |                        |                            |        |                  |       |       |      |
| 8000B-2S1R5GB          | 92                   | 142.7                  | 151.7                      |        | 101              |       | 126.8 | ø5   |
| 8000B-2S2R2GB          |                      |                        |                            |        |                  |       |       |      |
| 8000B-4TR75GB          |                      |                        |                            |        |                  |       |       |      |
| 8000B-4T1R5GB          | 92                   | 142.7                  | 151.7                      |        | 101              |       | 126.8 | ø5   |
| 8000B-4T2R2GB          |                      |                        |                            |        |                  |       |       |      |
| 8000B-4T004GB/4T5R5PB  |                      |                        |                            |        |                  |       |       |      |
| 8000B-4T5R5GB/4T7R5PB  | 144.4                | 237                    | 249.5                      |        | 155.5            |       | 159.5 | ø5.9 |
| 8000B-4T7R5GB          |                      |                        |                            |        |                  |       |       |      |
| 8000B-4T011GB/4T015PB  |                      |                        |                            |        |                  |       |       |      |
| 8000B-4T015GB/4T18R5PB | 156.6                | 378.3                  | 364                        | 396    | 214              | 221.7 | 190.5 | ø6   |
| 8000B-4T18R5GB         |                      |                        |                            |        |                  |       |       |      |
| 8000B-4T022G/4T030P    |                      |                        |                            |        |                  |       |       |      |
| 8000B-4T030G/4T037P    | 235                  | 447                    | 424                        | 463    | 285              | 289.6 | 210.3 | ø7   |
| 8000B-4T037G           |                      |                        |                            |        |                  |       |       |      |
| 8000B-4T045G/4T055P    | 200                  | 580                    | 544                        | 595.5  | 380              | 390   | 284.8 | ø10  |
| 8000B-4T055G/4T075P    | 200                  | 580                    |                            |        |                  |       |       |      |
| 8000B-4T075G/4T093P    |                      |                        |                            |        |                  |       |       |      |
| 8000B-4T093G/4T110P    | 343                  | 674                    | 650                        | 701.5  | 473              | 485   | 318   | ø10  |
| 8000B-4T110G           |                      |                        |                            |        |                  |       |       |      |
| 8000B-4T132G/4T160P    |                      |                        |                            | 1359   | 580              | 3     |       | ø10  |
| 8000B-4T160G/4T185P    | 449                  | 902.5                  | 927                        |        |                  |       | 384   |      |
| 8000B-4T185G           |                      |                        |                            |        |                  |       |       |      |
| 8000B-4T200G/4T220P    |                      |                        |                            |        |                  |       | 400.5 | ø12  |
| 8000B-4T220G/4T250P    | 420                  | 1162                   | 1131.5                     | 1481.6 | 680              |       |       |      |
| 8000B-4T250G/4T280P    |                      |                        |                            |        |                  |       |       |      |
| 8000B-4T280G/4T315P    |                      |                        | 1355                       | 1765   | 800              |       | 392.5 |      |
| 8000B-4T315G           | 520                  | 1300                   |                            |        |                  |       |       | a14  |
| 8000B-4T350G           | 320                  |                        |                            | 1/03   |                  |       |       | ø14  |
| 8000B-4T400G           |                      |                        |                            |        |                  |       |       |      |

## 1.7 Dimensions of Extension Keyboard



11kW~400kW (model G)

## **1.8 Braking Resistor Selection Table**

| Inverter Model         | Recommended<br>Power of Brake<br>Resistor | Recommended<br>Resistance Value of<br>Brake Resistor | Brake Unit              |
|------------------------|-------------------------------------------|------------------------------------------------------|-------------------------|
| 8000B-2SR75GB          | 80W                                       | $\geq 150\Omega$                                     |                         |
| 8000B-2S1R5GB          | 100W                                      | $\geq 100\Omega$                                     |                         |
| 8000B-2S2R2GB          | 100W                                      | $\geq 70\Omega$                                      |                         |
| 8000B-4TR75GB          | 150W                                      | $\geq 300\Omega$                                     |                         |
| 8000B-4T1R5GB          | 150W                                      | $\geq 220\Omega$                                     | Standard                |
| 8000B-4T2R2GB          | 250W                                      | $\geq 200\Omega$                                     | Accessory               |
| 8000B-4T004GB/4T5R5PB  | 300W                                      | $\geq 130\Omega$                                     | Inside                  |
| 8000B-4T5R5GB/4T7R5PB  | 400W                                      | $\geq 90\Omega$                                      |                         |
| 8000B-4T7R5GB          | 500W                                      | $\geq 65\Omega$                                      |                         |
| 8000B-4T011GB/4T015PB  | 800W                                      | $\geq 43\Omega$                                      |                         |
| 8000B-4T015GB/4T18R5PB | 1000W                                     | $\geq 32\Omega$                                      |                         |
| 8000B-4T18R5GB         | 1300W                                     | $\geq 25\Omega$                                      |                         |
| 8000B-4T022G/4T030P    | 1500W                                     | $\geq 22\Omega$                                      |                         |
| 8000B-4T030G/4T037P    | 2500W                                     | $\geq 16\Omega$                                      |                         |
| 8000B-4T037G           | 3.7 kW                                    | $\geq 16.0\Omega$                                    |                         |
| 8000B-4T045G/4T055P    | 4.5 kW                                    | $\geq 16\Omega$                                      |                         |
| 8000B-4T055G/4T075P    | 5.5 kW                                    | $\geq 8\Omega$                                       |                         |
| 8000B-4T075G/4T093P    | 7.5 kW                                    | $\geq 8\Omega$                                       |                         |
| 8000B-4T093G/4T110P    | 4.5 kW×2                                  | $\geq 8\Omega \times 2$                              |                         |
| 8000B-4T110G           | 5.5 kW×2                                  | $\geq 8\Omega \times 2$                              | Additional              |
| 8000B-4T132G/4T160P    | 6.5 kW×2                                  | $\geq 8\Omega \times 2$                              | Accessory<br>(oxtornal) |
| 8000B-4T160G/4T185P    | 16kW                                      | $\geq 2.5\Omega$                                     | (external)              |
| 8000B-4T185G           | 20 kW                                     | $\geq 2.5\Omega$                                     |                         |
| 8000B-4T200G/4T220P    | 20 kW                                     | $\geq 2.5\Omega$                                     |                         |
| 8000B-4T220G/4T250P    | 22 kW                                     | $\geq 2.5\Omega$                                     |                         |
| 8000B-4T250G/4T280P    | 12.5 kW×2                                 | $\geq 2.5\Omega \times 2$                            |                         |
| 8000B-4T280G/4T315P    | 14kW×2                                    | $\geq 2.5\Omega \times 2$                            |                         |
| 8000B-4T315G           | 16kW×2                                    | $\geq 2.5\Omega \times 2$                            |                         |
| 8000B-4T350G           | 17kW×2                                    | $\geq 2.5\Omega \times 2$                            |                         |
| 8000B-4T400G           | 14 kW×3                                   | ≥2.5Ω×3                                              |                         |

## Chapter 2 Installation and Wiring

### 2.1 Installation

#### 2.1.1 Installation Enviornment

 $\bigcirc$  The ambient temperature exerts great influences on the service life of the VFDs and is not allowed to exceed the specified temperature range (-10°C to 40°C ).

◎A VFD is easy to generate large amount of heat during operation. Thus VFDs should be mounted vertically with screws on the surface of incombustible objects, with sufficient spaces nearby for heat sinking.

 $\bigcirc$  VFDs should be mounted in the place without vibration or with vibration of less than 0.6G, especially away from those kinds or machine such as punch.

© The inverter should be mounted in locations away from direct sunlight, high humidity, condensate, corrosive gas, explosive gas, oil dirt, dust, and metal powder etc.

#### 2.1.2Installation Orientation & Clearance

#### Single Drive & multi drives (Side by Side) Installation



#### Multi Drive (up and down) Installation

When take up and down installation, air deflector should be installed between upper and lower VFD, as illustrated below.



### 2.1.3 Removing/Reinstalling the Front Cover



#### 2.1.4 Electric Elements and Material

#### Peripheral Electric Elements



**Connection Diagram** 

| Name                                | Mounting Location                                             | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Circuit<br>Breaker                  | Front end of input circuit                                    | Disconnect the power supply when the backward equipment is over current.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contactor                           | Between the circuit breaker<br>and inverter input side        | Power ON/OFF of inverter. Do not use the contactor as the switch of inverter. Otherwise, it may cause damage to the inverter.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AC Reactor<br>at the Input<br>Side  | Input side of inverter                                        | <ol> <li>Improve the power factor of the input side.</li> <li>Eliminate the harmonic wave at the input side effectively and prevent other equipment from damage.</li> <li>Eliminate the input current unbalance caused by unbalance between the power phases.</li> </ol>                                                                                                                                                                                                                                                                                                                |
| EMC Input<br>Filter                 | Input side of inverter                                        | <ol> <li>Reduce the external conduction and<br/>radiation interference of inverter.</li> <li>Decrease the conduction interference<br/>flowing from the power end to the inverter and<br/>improve the anti-interference capacity of the<br/>inverter.</li> </ol>                                                                                                                                                                                                                                                                                                                         |
| DC Reactor                          | Additional parts of 8000B series inverter                     | <ol> <li>Improve the power factor at the input side.</li> <li>Improve the whole efficiency and thermal<br/>stability of the inverter.</li> <li>Eliminate the impact of higher harmonics at<br/>the input side on the inverter and reduce the<br/>external conduction and radiation interference.</li> </ol>                                                                                                                                                                                                                                                                             |
| AC Reactor<br>at the<br>Output Side | Between inverter output side<br>and motor. Close to inverter. | The inverter output side generally has higher<br>harmonics. When the motor is far from<br>inverter, since there are many distributed<br>capacitors in the circuit, certain harmonics<br>may cause resonance in the circuit and bring<br>the following two impacts:<br>1. Degrade the motor insulation performance<br>and damage the motor when running for long<br>time.<br>2. Generate large leakage current and cause<br>frequent inverter protection.<br>Generally, installation of output AC reactor is<br>recommended when the distance between<br>inverter and motor exceeds 50m. |

#### **2.1.5 Descriptions of External Electrical Parts**

#### 2.1.6 Table of Recommended Circuit Breaker, Contactor and Wire

| Inverter Model         | Circuit<br>Breaker<br>(MCCB)<br>(A) | Recomme<br>-nded<br>Contactor<br>(A) | Conducting<br>Wire of<br>Main Circuit<br>at the Input<br>Side (mm <sup>2</sup> ) | Conducting<br>Wire of<br>Main Circuit<br>at the Input<br>Side (mm <sup>2</sup> ) | Conducting<br>Wire of<br>Control<br>Circuit<br>(mm <sup>2</sup> ) |
|------------------------|-------------------------------------|--------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 8000B-2SR75GB          | 16                                  | 10                                   | 2.5                                                                              | 2.5                                                                              | 1.0                                                               |
| 8000B-2S1R5GB          | 20                                  | 16                                   | 4.0                                                                              | 2.5                                                                              | 1.0                                                               |
| 8000B-2S2R2GB          | 32                                  | 20                                   | 6.0                                                                              | 4.0                                                                              | 1.0                                                               |
| 8000B-4TR75GB          | 10                                  | 10                                   | 2.5                                                                              | 2.5                                                                              | 1.0                                                               |
| 8000B-4T1R5GB          | 16                                  | 10                                   | 2.5                                                                              | 2.5                                                                              | 1.0                                                               |
| 8000B-4T2R2GB          | 16                                  | 10                                   | 2.5                                                                              | 2.5                                                                              | 1.0                                                               |
| 8000B-4T004GB/4T5R5PB  | 25                                  | 16                                   | 4.0                                                                              | 4.0                                                                              | 1.0                                                               |
| 8000B-4T5R5GB/4T7R5PB  | 32                                  | 25                                   | 4.0                                                                              | 4.0                                                                              | 1.0                                                               |
| 8000B-4T7R5GB          | 40                                  | 32                                   | 4.0                                                                              | 4.0                                                                              | 1.0                                                               |
| 8000B-4T011GB/4T015PB  | 63                                  | 40                                   | 4.0                                                                              | 4.0                                                                              | 1.0                                                               |
| 8000B-4T015GB/4T18R5PB | 63                                  | 40                                   | 6.0                                                                              | 6.0                                                                              | 1.0                                                               |
| 8000B-4T18R5GB         | 100                                 | 63                                   | 6.0                                                                              | 6.0                                                                              | 1.5                                                               |
| 8000B-4T022G/4T030P    | 100                                 | 63                                   | 10                                                                               | 10                                                                               | 1.5                                                               |
| 8000B-4T030G/4T037P    | 125                                 | 100                                  | 16                                                                               | 10                                                                               | 1.5                                                               |
| 8000B-4T037G           | 160                                 | 100                                  | 16                                                                               | 16                                                                               | 1.5                                                               |
| 8000B-4T045G/4T055P    | 200                                 | 125                                  | 25                                                                               | 25                                                                               | 1.5                                                               |
| 8000B-4T055G/4T075P    | 200                                 | 125                                  | 35                                                                               | 25                                                                               | 1.5                                                               |
| 8000B-4T075G/4T093P    | 250                                 | 160                                  | 50                                                                               | 35                                                                               | 1.5                                                               |
| 8000B-4T093G/4T110P    | 250                                 | 160                                  | 70                                                                               | 35                                                                               | 1.5                                                               |
| 8000B-4T110G           | 350                                 | 350                                  | 120                                                                              | 120                                                                              | 1.5                                                               |
| 8000B-4T132G/4T160P    | 400                                 | 400                                  | 150                                                                              | 150                                                                              | 1.5                                                               |
| 8000B-4T160G/4T185P    | 500                                 | 400                                  | 185                                                                              | 185                                                                              | 1.5                                                               |
| 8000B-4T185G           | 600                                 | 600                                  | 150*2                                                                            | 150*2                                                                            | 1.5                                                               |
| 8000B-4T200G/4T220P    | 600                                 | 600                                  | 150*2                                                                            | 150*2                                                                            | 1.5                                                               |
| 8000B-4T220G/4T250P    | 600                                 | 600                                  | 150*2                                                                            | 150*2                                                                            | 1.5                                                               |
| 8000B-4T250G/4T280P    | 800                                 | 600                                  | 185*2                                                                            | 185*2                                                                            | 1.5                                                               |
| 8000B-4T280G/4T315P    | 800                                 | 800                                  | 185*2                                                                            | 185*2                                                                            | 1.5                                                               |
| 8000B-4T315G           | 800                                 | 800                                  | 150*3                                                                            | 150*3                                                                            | 1.5                                                               |
| 8000B-4T350G           | 800                                 | 800                                  | 150*4                                                                            | 150*4                                                                            | 1.5                                                               |
| 8000B-4T400G           | 1000                                | 1000                                 | 150*                                                                             | 150*4                                                                            | 1.5                                                               |

#### 2.1.7 Table of Recommended Reactor

|                        | AC Re<br>the Inp | actor at<br>ut Side     | AC Re<br>the out | actor at<br>put Side    | DC R           |                         |         |
|------------------------|------------------|-------------------------|------------------|-------------------------|----------------|-------------------------|---------|
| Inverter Model         | Current (A)      | Inducta<br>-nce<br>(mH) | Current<br>(A)   | Inducta<br>-nce<br>(mH) | Current<br>(A) | Inducta<br>-nce<br>(mH) | Voltage |
| 8000B-2SR75GB          | 2                | 7                       | 2                | 7                       | 3              | 28                      |         |
| 8000B-2S1R5GB          | 5                | 3.8                     | 5                | 3.8                     | 6              | 11                      | 220V    |
| 8000B-2S2R2GB          | 7.5              | 2.5                     | 7.5              | 2.5                     | 6              | 11                      |         |
| 8000B-4TR75GB          | 2                | 7                       | 2                | 3                       | 3              | 28                      |         |
| 8000B-4T1R5GB          | 5                | 3.8                     | 5                | 1.5                     | 6              | 11                      |         |
| 8000B-4T2R2GB          | 7                | 2.5                     | 7                | 1                       | 6              | 11                      |         |
| 8000B-4T004GB/4T5R5PB  | 10               | 1.5                     | 10               | 0.6                     | 12             | 6.3                     |         |
| 8000B-4T5R5GB/4T7R5PB  | 15               | 1.0                     | 15               | 0.25                    | 23             | 3.6                     |         |
| 8000B-4T7R5GB          | 20               | 0.75                    | 20               | 0.13                    | 23             | 3.6                     |         |
| 8000B-4T011GB/4T015PB  | 30               | 0.60                    | 30               | 0.087                   | 33             | 2                       |         |
| 8000B-4T015GB/4T18R5PB | 40               | 0.42                    | 40               | 0.066                   | 33             | 2                       |         |
| 8000B-4T18R5GB         | 50               | 0.35                    | 50               | 0.052                   | 40             | 1.3                     |         |
| 8000B-4T022G/4T030P    | 60               | 0.28                    | 60               | 0.045                   | 50             | 1.08                    |         |
| 8000B-4T030G/4T037P    | 80               | 0.19                    | 80               | 0.032                   | 65             | 0.80                    |         |
| 8000B-4T037G           | 90               | 0.16                    | 90               | 0.030                   | 78             | 0.70                    |         |
| 8000B-4T045G/4T055P    | 120              | 0.13                    | 120              | 0.023                   | 95             | 0.54                    |         |
| 8000B-4T055G/4T075P    | 150              | 0.10                    | 150              | 0.019                   | 115            | 0.45                    | 380V    |
| 8000B-4T075G/4T093P    | 200              | 0.08                    | 200              | 0.014                   | 160            | 0.36                    |         |
| 8000B-4T093G/4T110P    | 250              | 0.06                    | 250              | 0.011                   | 180            | 0.33                    |         |
| 8000B-4T110G           | 250              | 0.06                    | 250              | 0.011                   | 250            | 0.26                    |         |
| 8000B-4T132G/4T160P    | 290              | 0.04                    | 290              | 0.008                   | 250            | 0.26                    |         |
| 8000B-4T160G/4T185P    | 330              | 0.04                    | 330              | 0.008                   | 340            | 0.18                    |         |
| 8000B-4T185G           | 400              | 0.04                    | 400              | 0.005                   | 460            | 0.12                    |         |
| 8000B-4T200G/4T220P    | 490              | 0.03                    | 490              | 0.004                   | 460            | 0.12                    |         |
| 8000B-4T220G/4T250P    | 490              | 0.03                    | 490              | 0.004                   | 460            | 0.12                    |         |
| 8000B-4T250G/4T280P    | 530              | 0.03                    | 530              | 0.003                   | 650            | 0.11                    |         |
| 8000B-4T280G/4T315P    | 600              | 0.02                    | 600              | 0.003                   | 650            | 0.11                    |         |
| 8000B-4T315G           | 660              | 0.02                    | 660              | 0.002                   | 800            | 0.06                    |         |
| 8000B-4T350G           | 400*2            | 0.04                    | 400*2            | 0.005                   | 460*2          | 0.12                    |         |
| 8000B-4T400G           | 490*2            | 0.03                    | 490*2            | 0.004                   | 460*2          | 0.12                    |         |

## 2.2 Wiring

### 2.2.1 Wiring Diagram

0.75kW~2.2kW (model G) (3-phase,380V)



Note: 1. ◎ refers to terminals of main circuit; ○ refers to terminals of control circuit.
2. 0.75kW~2.2kW (model G) : brake unit is standard part inside.

3. 0.75kW~2.2kW (model G) of single-phase/220V: main circuit terminals are R and T.

#### 4kW~7.5kW (model G) (3-phase,380V)



Note: 1. ◎ refers to terminals of main circuit; ○ refers to terminals of control circuit. 2. 4kW~7.5kW (model G) : brake unit is standard part inside.

#### 11kW~18.5kW (model G) (3-phase,380V)



Note: 1. ◎ refers to terminals of main circuit; ○ refers to terminals of control circuit. 2. 11kW~18.5kW (model G) : brake unit is standard part inside.

#### 22kW~400kW (model G) (3-phase,380V)



Note: 1. O refers to terminals of main circuit; O refers to terminals of control circuit.

- 2. 22kW~400kW (model G) : brake unit is additional part outside.
- 3. 22kW~400kW (model G) : DC reactor is additional part outside.

#### 2.2.2 Main Circuit Terminals

#### (1) 0.75kW~2.2kW (model G) with built-in brake unit



(2) 4kW~7.5kW (model G) with built-in brake unit



(3) 11kW~18.5kW (model G) with built-in brake unit



(4) 22kW~37kW (model G)



#### (5) 45kW~110kW (model G)



#### (6) 132kW~400kW (model G)



## Main Circuit Terminals Description

| Terminals | Descriptions                                           |
|-----------|--------------------------------------------------------|
| R, S, T   | Terminals of AC power input.                           |
| U,V, W    | Terminals of AC power output                           |
| (+), (-)  | Spare terminals for connecting external brake unit.    |
| Р         | Spare terminal for connecting external DC reactor.     |
| PB        | Spare terminal for connecting external brake resistor. |
|           | Grounding terminal                                     |

**Note:** 1.PB terminal of 22-37kW(G) drives is float as defaut. If a built-in brake unit is needed, please contact WECON and ask for custom made product.

2.To the 22-37kW(G) drives, there is no external reactor terminal in default terminals, as the P terminal of other models. If an external reactor is needed, please contact WECON and ask for custom made product.

3.All types of reator of 8000B drive are optional parts. If any reactor is needed please make a description as in model selection.

#### 2.2.2 Precautions on Main Circuit Wiring

#### 2.2.2.1 Terminals R, S and T

The wiring at the input side of inverter has no phase sequence requirement. When input single-phase power, use terminal R and T.

#### 2.2.2.2 DC Bus Terminals (+) and (-)

The (+) and (-) terminals of DC bus have residual voltage right after power-off. Wait until the CHARGE indicator is OFF and make sure that the voltage is less than 36V before wiring. Otherwise it may cause electrical shock.

When use external brake unit for inverter of 22kW and above, the poles of (+)

and (-) should not be connected reversely. Otherwise, it may cause damage to inverter and even cause fire.

The cable length of brake unit should be less than 10m. Use twisted pair cable or connect in parallel.

Do not connect brake resistor directly to the DC bus. Otherwise, it may cause damage to inverter and even cause fire.

#### 2.2.2.3 Terminals (+) and PB of Brake Resistor

The terminals of brake resistor are effective only for inverter of 18.5kW and below with built-in brake unit.

The cable length of brake resistor should be less than 5m.

#### 2.2.2.4 Terminals P and (+) of External Reactor

For inverter of 22kW and above, the reactor is additional part which is connected externally.

#### 2.2.2.5 Terminals U, V and W

Capacitor device or surge absorber can not be connected to inverter output side by terminals U, V and W. Otherwise, it may cause frequent inverter protection or damage to inverter.

If motor cable is too long, it may generate electrical resonance easily due to the impact of distributed capacitance and thus damage the motor insulation or generate higher leakage current to cause inverter protection. When the length of motor cable is longer than 50m, installing AC reactor at the output side is necessary.

#### 2.2.2.6 Grounding Terminal

The terminal should be grounded reliably. The resistance value of grounding cable should be less than  $10\Omega$ . Otherwise, it may cause fault or damage to the inverter.

Do not share the grounding terminal with zero line of power supply.

#### 2.2.3 Control Circuit Terminals

#### 0.75kW~2.2kW Control Circuit Terminals

| TA | ТВ | TC | M1 | M2 | M3 | M4 | M5 | M6 | GND | FM | AM | ACI | 10V | AVI | GND | МСМ | MO1 |
|----|----|----|----|----|----|----|----|----|-----|----|----|-----|-----|-----|-----|-----|-----|
|----|----|----|----|----|----|----|----|----|-----|----|----|-----|-----|-----|-----|-----|-----|

### 4kW~400kW Control Circuit Terminals

| N | 11 | Ν         | Л2 | N | //3 | cc | м | N  | 14 | N | 15 | N  | 16 | СС | м  | 24 | ١V |    |    |    |
|---|----|-----------|----|---|-----|----|---|----|----|---|----|----|----|----|----|----|----|----|----|----|
|   | м  | <b>D1</b> | МС | м | A   | VI | A | СІ | 10 | V | GN | ١D | GN | ١D | FI | N  | AM | ТА | тв | тс |

#### **Communication Terminals**

| 1  | 2  | 3    | 4   | 5   | 6  | 7   | 8   |
|----|----|------|-----|-----|----|-----|-----|
| S+ | S- | +15V | GND | +5V | NC | +5V | GND |


| Туре                      | Terminal<br>Symbol                       | Function                                | Interface<br>Standard |
|---------------------------|------------------------------------------|-----------------------------------------|-----------------------|
| Computer<br>Communication | S+                                       | 485 difference signal positive terminal |                       |
|                           | S                                        | 485 difference signal negative terminal | Standard RS485        |
|                           | +5V                                      | Extension power positive terminal (+5V) | communication         |
|                           | +15V Extension power positive terminal(+ |                                         | Interface             |
|                           | GND                                      | Extension power negative terminal       |                       |

#### 2.2.4 Descriptions of Control Circuit Terminals

| Symbol | Terminal Name                                           | Function                                                                                                                                                                                                                                                                                                         |
|--------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M1~M6  | Multi-function digital<br>input terminal                | 0.75-2.2kW (G): Digital terminals can not be<br>connected to power directly. When connected to<br>GND terminal, it is power-on and the<br>corresponding current is 10mA. 4kW and<br>above: Optical coupling isolation input<br>compatible with +24V and COM. Input voltage<br>range:9-36V, input impedance:3.3kΩ |
| MO1    | Multi-function output<br>terminal                       | (optical coupling isolating)Max. DC 48V/50mA                                                                                                                                                                                                                                                                     |
| МСМ    | Common terminal of<br>multi-function output<br>terminal | (optical coupling isolating)Max. DC 48V/50mA                                                                                                                                                                                                                                                                     |
| AVI    | Analog input terminal 1                                 | Input voltage range:DC 0~10V (input<br>impedance:20kΩ)                                                                                                                                                                                                                                                           |

| ACI       | Analog input terminal 2      | 1. input range:DC 0-10V or 0/4~20mA. It is<br>selected by jumper JP1 on control board. The<br>default is current input. 1-2Pin: voltage input;<br>2-3Pin: current input. 2. Input impedance: $20k\Omega$<br>when input voltage; $500\Omega$ when input current. |
|-----------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10V       | Analog reference voltage     | 10V ±5%,max. current: 30mA                                                                                                                                                                                                                                      |
| GND       | Analog grounding<br>terminal | Zero potential referring to +10V                                                                                                                                                                                                                                |
| FM        | Analog output terminal 1     | FM:0~10V                                                                                                                                                                                                                                                        |
| AM        | Analog output terminal 2     | Output range: 0~10V or 0/4-20mA. It is selected<br>by jumper JP2 on control board. The default is<br>current output. 1-2Pin: current output; 2-3Pin:<br>voltage output. 0.75~2.2kW:0/4~20mA.<br>4~400kW:0~10V / 0/4~20mA.                                       |
| TA/TB/ TC | Relay output contact         | TA-TB:normal open;TB-TC:normal close<br>Contact capacity: AC 250V / 3A/ normal open<br>AC 250V / 3A / normal close                                                                                                                                              |
| +24V      | +24V power supply            | Output current: Maxi. 200mA, usually used as power of digital input/output terminals and external sensor.                                                                                                                                                       |
| СОМ       | +24V power supply            | Output current: Maxi. 200mA, usually used as power of digital input/output terminals and external sensor.                                                                                                                                                       |

#### 2.2.5 Precautions for Connecting Control Circuit Terminals

It is necessary to use shielded cable and twisted pair cable with well-grounded (inverter side). The cable length should be more than 20cm away from main circuit and strong electricity circuit. In order to avoid interference which can cause inverter fault, use vertical connection instead of parallel connection.

# **Chapter 3 Keypad Operation**

## 3.1 Keypad Operation

#### 3.1.1 Keypad Outline



#### 3.1.2 Keys Description

| Symbol | Key Name             | Function Description                           |
|--------|----------------------|------------------------------------------------|
| PRGM   | Program/ Exit key    | Enter or exit of menu, parameter modification  |
| ENT    | Data enter key       | Progressively enter menu and confirm parameter |
|        | UP increase key      | Progressively increase data or function codes. |
| V      | DOWN decrease<br>key | Progressively decrease data or function codes. |

| \$          | Shift key      | Use it to select displayed parameters cyclically<br>during running or stop status. In parameter setting<br>mode, press this key to select the bit to be modified.                                    |
|-------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RUN         | Run key        | Start to run the inverter in keypad control mode.                                                                                                                                                    |
| STOP/ RESET | Stop/reset key | In running status, restricted by function code F7.04, it can be used to stop the inverter, In malfunction alarm status, not restricted by function code F7.04, it can be used to reset the inverter. |
| REV/JOG     | Shortcut key   | Determined by function code F7.03.                                                                                                                                                                   |

#### 3.1.3 Indicator Light Description

| Indicator Light | Description                                                             |
|-----------------|-------------------------------------------------------------------------|
| Run             | Run light on: Drive running                                             |
| Stop            | Stop light on: Drive stop or in malfunction status                      |
| FWD             | FWD light on: Drive running forward(with Run light on at the same time) |
| REV             | REV light on: Drive running reverse(with Run light on at the same time) |

# **3.2 Operation Details**

### 3.2.1 Parameter Setting

Three levels of menu are as following:

- · Function code group (first-class)
- · Function code (second-class)
- · Setting parameter of function code (third-class)

#### **Remarks:**

Pressing PRGM or ENT can return to the second-class menu from the third-class menu. The difference is: Pressing ENT will save the setting parameters into control board, and return to the second-class menu with shifting to the next function code automatically. While pressing PRGM will directly return to the second-class menu without saving the parameters, and keep staying at the current function code.

#### For example:

change the parameter 00.50Hz of function code F1.01 into 05.00Hz as the following flow chart shows:





Under the third-class menu, if the parameter has no flickering bit, it means that the function code cannot be modified. The possible reasons include:

(1) The parameter of this function code can't be modified, such as actually detected parameter, operation records and so on.

(2) This function code can't be modified during running status, but can be modified during stop status.

#### 3.2.2 Fault Reset

When inverter malfunction occurs, it will display the relative fault information. Use the STOP/ RESET key or terminals (determined by F5 group) to reset the fault. After fault reset, inverter is at stand-by status. If not reset when inverter is at fault status, it will keep operation protection status and cannot run.

#### 3.2.3 Motor Parameter Autotuning

When select SVC control mode (sensorless vector control), make sure that motor nameplate parameters are correctly input into the inverter. Inverter will match standard motor parameter according to nameplate parameter. In order to achieve precise control, autotuning is necessary. Refer to the following steps:

Firstly, set the parameter of F0.01 to 0. This means that select the keypad to control stop or start. Then input the following parameters according to the motor nameplate:

F2.01: Motor rated power

F2.02: Motor rated frequency

F2.03: Motor rated rotation speed

F2.04: Motor rated voltage

F2.05: Motor rated current

#### **Remarks:**

If motor can be uncoupled with its load completely, set the parameter of F2.11 to 1 (complete tuning) and then push RUN key, inverter can calculate the parameter of motor. During autotuning process, the panel of inverter will display –RUN-. When it displays –END-, the autotuning process is finished.

If motor cannot be uncoupled with its load, set the parameter of F2.11 to 2 (static tuning) and push RUN key, inverter will auto-detect the parameters

of motor stator resistor, rotator resistor and leakage inductance, while the parameters of motor mutual inductance and no-load current are not detected. The parameters of motor mutual inductance and no-load current can be calculated by the following formula:

 $Lm = \frac{U}{2\sqrt{3}\pi f \cdot I_0} - L\delta$ 

IO:motor no-load current

Lm: motor mutual inductance

 $L\delta$ : motor leakage inductance

U: motor rated voltage

I: motor rated current

f: motor rated frequency

 $\eta$ : motor power factor

#### 3.2.4 Password Setting

When F7.00 is set to be non-zero, the parameter will be the user's password. After exit the function code editing status, the password will be effective after one minute. And then press the PRGM key again to try to access the function code editing mode, the inverter panel will display "0.0.0.0". The password must be input correctly to access it. If it is necessary to cancel the password function, set F7.00 to zero.

**Notice:** When the inverter is powered on, system will execute initialization first and inverter panel displays "8000" with four lights on. After initialization, inverter accesses into stand-by status.

# **Chapter 4 Function Parameter Table**

### 4.1 Symbol Conventions:

"o": The parameters can be modified both at stop and running status.

" $\mathbb{O}$ ": The parameters cannot be modified at running status.

"•": The parameters are actual-detecting record value or factory preserved settings and cannot be modified.

#### Notice:

The 8000B drive with F7.10 software version record as 4.xx or newer is new CPU platform. The parameters related to the new CPU platform are refered to the appendix of this user manual.

| Function<br>Code | Function                                                                              | Descriptions                                                                                                                                                                                        | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
|                  |                                                                                       | F0 Group: Basic Paran                                                                                                                                                                               | neters          |                    |                        |
| F0.00            | Control mode selection                                                                | 0: Sensorless vector<br>control 1:V/F control                                                                                                                                                       |                 | 1                  | •                      |
| F0.01            | Control command source                                                                | 0:Keypad 1:Terminals 2:<br>Communications<br>(RS485)                                                                                                                                                |                 | 0                  | •                      |
| F0.02            | Options for keypad<br>/ terminals<br>frequency<br>ascending and<br>descending control | 0: Valid and saved when<br>power-off 1:Valid and<br>not saved when<br>power-off 2: Invalid 3 .<br>Validat running status.<br>Changed into the setting<br>value of F0.08 when<br>restart after stop. |                 | 0                  | 0                      |
| F0.03            | Settings of master frequency source X                                                 | 0: Up/down key<br>1: Potentiometer of panel                                                                                                                                                         |                 | 1                  | •                      |

## 4.2 Function Parameter Table

| Function<br>Code | Function                                                                        | Descriptions                                                                                                                                       | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
|                  |                                                                                 | 2: AVI terminal                                                                                                                                    |                 |                    |                        |
| F0.03            | Settings of master<br>frequency source X                                        | 3: ACI terminal<br>4: Reserved<br>5: Reserved<br>6: Multi-function digital<br>input terminals<br>7: PLC<br>8: PID<br>9: Communication<br>interface |                 | 1                  | •                      |
| F0.04            | Settings of<br>auxiliary<br>frequency source Y                                  | 0: AVI terminal<br>1: ACI terminal<br>2: Reserved                                                                                                  |                 | 1                  | •                      |
| F0.05            | Setting range of<br>auxiliary<br>frequency source Y<br>when it is<br>superposed | 0 : Relative to the maxi.<br>Frequency<br>1: Relative to master<br>frequency setting source<br>X                                                   |                 | 0                  | •                      |
| F0.06            | Reserved                                                                        |                                                                                                                                                    |                 |                    |                        |
| F0.07            | Frequency<br>reference selection                                                | 0:X<br>1: Y<br>2: X and Y<br>3: Max. value of (X, Y)                                                                                               |                 | 0                  | 0                      |
| F0.08            | Keypad setting<br>frequency                                                     | 0.00Hz~ F0.10                                                                                                                                      | 0.01Hz          | 50.00 Hz           | 0                      |
| F0.09            | Running direction selection                                                     | 0: Forward<br>1: Reverse<br>2: Reverse running<br>prohibited                                                                                       |                 | 0                  | •                      |
| F0.10            | Max. output frequency                                                           | 10.00~600.00Hz                                                                                                                                     | 0.01Hz          | 50.00Hz            | •                      |

| Function<br>Code | Function                                     | Descriptions                                                                                                                           | Minimum<br>Unit | Factory<br>Setting                                 | Modifica-<br>tion Type |
|------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------|------------------------|
| F0.11            | Upper limit<br>frequency source<br>selection | 0:Keypad (F0.12)<br>1:AVI terminal<br>2: ACI terminal<br>3: Multi-function digital<br>input terminals<br>4: Communication<br>interface |                 | 0                                                  | 0                      |
| F0.12            | Upper limit<br>frequency                     | F0.14~ F0.10                                                                                                                           | 0.01Hz          | 50.00Hz                                            | 0                      |
| F0.13            | Reserved                                     |                                                                                                                                        |                 |                                                    |                        |
| F0.14            | Lower limit frequency                        | 0.00Hz~ F0.12                                                                                                                          | 0.01Hz          | 0.00Hz                                             | 0                      |
| F0.15            | The function of<br>lower limit<br>frequency  | <ul><li>0 : Running at lower limit</li><li>frequency</li><li>1: Stop frequency point</li><li>2: Sleep frequency point</li></ul>        |                 | 0                                                  | 0                      |
| F0.16            | Carrier frequency setting                    | 1.0~15.0kHz                                                                                                                            | 1kHz            | Different<br>according to<br>the inverter<br>type  | 0                      |
| F0.17            | PWM mode selection                           | 0:PWM mode 1<br>1:PWM mode 2<br>2:PWM mode 3                                                                                           |                 | 0                                                  | •                      |
| F0.18            | Acceleration time                            | 0.1~3600.0s                                                                                                                            | 0.1s            | Different<br>according to<br>the inverter<br>type  | 0                      |
| F0.19            | Deceleration time                            | 0.1~3600.0s                                                                                                                            | 0.1s            | Different<br>according to<br>the inverter<br>types | 0                      |

| Function<br>Code | Function                                                              | Descriptions                                                                          | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| F0.20            | Default setting<br>restoring                                          | 0:No operation<br>1: Restore to factory<br>setting 2:Fault record<br>clearing         |                 | 0                  | •                      |
| F0.21            | Parameter lock and<br>unlock                                          | 0: Unlock parameter<br>1: Lock parameter                                              |                 | 0                  | 0                      |
| F0.22            | Acceleration/<br>deceleration<br>method                               | 0: Linear method<br>1: S curve method                                                 |                 | 0                  | •                      |
| F0.23            | S Curve Starting<br>Stage Ratio                                       | 0.1%~50.0%                                                                            | 0.1%            | 30.0%              | •                      |
| F0.24            | S Curve Finishing<br>Stage Ratio                                      | 0.1%~50.0%                                                                            | 0.1%            | 30.0%              | •                      |
| F0.25            | Cooling fan<br>running method<br>(only for 4kW and<br>above inverter) | 0: Keep running when<br>power on<br>1: Automatic running                              |                 | 1                  | 0                      |
|                  |                                                                       | F1 Group: Start and Stop F                                                            | arameters       |                    |                        |
| F1.00            | Start mode                                                            | 0:Start directly<br>1:DC braking first and<br>then start<br>2:Speed tracing and start |                 | 0                  | •                      |
| F1.01            | Start frequency                                                       | 0.00~10.00Hz                                                                          | 0.01Hz          | 1.50Hz             | 0                      |
| F1.02            | Hold time of start frequency                                          | 0.0~50.0s                                                                             | 0.1s            | 0.0s               | 0                      |
| F1.03            | DC braking current before start                                       | 0.0~150.0%                                                                            | 0.10%           | 0.00%              | 0                      |
| F1.04            | DC braking time before start                                          | 0.0~50.0s                                                                             | 0.1s            | 0.0s               | 0                      |

| Function<br>Code           | Function                                       | Descriptions                                | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|----------------------------|------------------------------------------------|---------------------------------------------|-----------------|--------------------|------------------------|
| F1.05                      | Stop mode                                      | 0: Deceleration to stop<br>1: Coast to stop |                 | 0                  | 0                      |
| F1.06                      | Trigging frequency<br>of DC braking at<br>stop | 0.00~ F0.10                                 | 0.01Hz          | 0.00Hz             | 0                      |
| F1.07                      | Waiting time<br>before DC braking<br>at stop   | 0.0~50.0s                                   | 0.1s            | 0.0s               | 0                      |
| F1.08                      | DC braking current at stop                     | 0.0~150.0%                                  | 0.10%           | 0.00%              | 0                      |
| F1.09                      | DC braking time at stop                        | 0.0~50.0s                                   | 0.1s            | 0.0s               | 0                      |
| F1.10                      | Dead time between<br>FWD and REV               | 0.0~3600.0s                                 | 0.1s            | 0.0s               | 0                      |
| F1.11                      | Terminals control<br>option when power<br>on   | 0: Disabled<br>1: Enabled                   |                 | 1                  | 0                      |
| F1.12 ~<br>F1.17           | Reserved                                       |                                             |                 |                    |                        |
| F1.18                      | Wake-up time<br>delay                          | 0.0~3600s                                   | 0.1s            | 0.0s               | 0                      |
| F1.19                      | Restart option after<br>power-off              | 0: Disabled<br>1:Enabled                    |                 | 0                  | 0                      |
| F1.20                      | Waiting time of<br>restart after<br>power-off  | 0.0~3600s                                   | 0.1s            | 0.0s               | 0                      |
| F1.21                      | Over modulation option                         | 0: Disabled<br>1:Enabled                    |                 | 0                  | 0                      |
| F2 Group: Motor Parameters |                                                |                                             |                 |                    |                        |
| F2.00                      | Drive model                                    | 0:General model (G)<br>1:Pump model (P)     |                 | 0                  | •                      |

| Function<br>Code | Function                           | Descriptions                                                                                  | Minimum<br>Unit | Factory<br>Setting                             | Modifica-<br>tion Type |
|------------------|------------------------------------|-----------------------------------------------------------------------------------------------|-----------------|------------------------------------------------|------------------------|
| F2.01            | Motor rated power                  | 0.4~700.0kW                                                                                   | 0.1kW           | Different<br>according to<br>inverter<br>model | •                      |
| F2.02            | Motor rated<br>frequency           | 10.00Hz~ F0.10                                                                                | 0.01Hz          | 50.00Hz                                        | •                      |
| Function<br>Code | Function                           | Descriptions                                                                                  | Minimum<br>Unit | Factory<br>Setting                             | Modificatio<br>n Type  |
| F2.03            | Motor rated rotation speed         | 0~36000rpm                                                                                    | 1 rpm           | Different<br>according to<br>inverter<br>model | •                      |
| F2.04            | Motor rated voltage                | 0~480V                                                                                        | 1V              |                                                | •                      |
| F2.05            | Motor rated current                | 0.8~2000A                                                                                     | 0.1A            |                                                | •                      |
| F2.06            | Motor stator resistance            | 0.001~65.53Ω                                                                                  | 0.001Ω          |                                                | 0                      |
| F2.07            | Motor rotator<br>resistance        | 0.001~65.53Ω                                                                                  | 0.001Ω          |                                                | 0                      |
| F2.08            | Motor stator<br>inductance         | 0.1~6553mH                                                                                    | 0.1mH           |                                                | 0                      |
| F2.09            | Motor rotator<br>mutual inductance | 0.1~6553mH                                                                                    | 0.1mH           |                                                | 0                      |
| F2.10            | Motor no-load<br>current           | 0.1~655.3A                                                                                    | А               |                                                | 0                      |
| F2.11            | Motor parameters<br>auto-tuning    | 0:No auto-tuning<br>1:Autotuning<br>completely(no load)<br>2:Static auto-tuning(with<br>load) |                 | 0                                              | •                      |
| F2.12            | Reserved                           |                                                                                               |                 |                                                |                        |

| Function<br>Code | Function                                                  | Descriptions                                                                                                                                                                                                                  | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
|                  | 1                                                         | F3 Group: Vector Control I                                                                                                                                                                                                    | Parameters      |                    |                        |
| F3.00            | Proportional gain 1<br>of speed loop                      | 0~100                                                                                                                                                                                                                         |                 | 20                 | 0                      |
| F3.01            | Integral time 1 of speed loop                             | 0.01~10.00s                                                                                                                                                                                                                   | 0.01s           | 0.50s              | 0                      |
| F3.02            | Low frequency point of switch                             | 0.00Hz~F3.05                                                                                                                                                                                                                  | 0.01Hz          | 5.00Hz             | 0                      |
| F3.03            | Proportional gain 2<br>of speed loop                      | 0~100                                                                                                                                                                                                                         | 1               | 25                 | 0                      |
| F3.04            | Integral time 2 of speed loop                             | 0.01~10.00s                                                                                                                                                                                                                   | 0.01s           | 1.00s              | 0                      |
| F3.05            | High frequency point of switch                            | F3.02~F0.10                                                                                                                                                                                                                   | 1Hz             | 10.00Hz            | 0                      |
| F3.06            | Coefficient of slip<br>compensation at<br>VC control mode | 50~200%                                                                                                                                                                                                                       | 1%              | 100%               | 0                      |
| F3.07            | Upper limit torque                                        | 0.0 ~200.0% (Drive rated current)                                                                                                                                                                                             | 0.10%           | 150.00%            | 0                      |
| F3.08            | Reserved                                                  |                                                                                                                                                                                                                               |                 |                    |                        |
| F3.09            | Reserved                                                  |                                                                                                                                                                                                                               |                 |                    |                        |
| F3.10            | Pre-alarm option<br>when overload                         | 0: Not detect<br>1: Effective during<br>running and<br>keep running after alarm<br>2: Effective during<br>running<br>and stop after alarm (fault<br>code:E023)<br>3: Effective during<br>constant<br>running and keep running |                 | 1                  | 0                      |

| Function<br>Code | Function                                         | Descriptions                                                                                                                                                                     | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
|                  |                                                  | after<br>alarm<br>4: Effective during<br>constant<br>running and stop after<br>alarm                                                                                             |                 |                    |                        |
| F3.11            | Detecting level of<br>pre-alarm when<br>overload | 1.0~200.0% (referred to inverter rated current)                                                                                                                                  | 0.10%           | 150.00%            | 0                      |
| F3.12            | Detecting time of<br>pre-alarm when<br>overload  | 0~600s                                                                                                                                                                           | ls              | 1s                 | 0                      |
|                  |                                                  | F4 Group: V/F Control Pa                                                                                                                                                         | rameters        |                    |                        |
| F4.00            | V/F curve selection                              | 0: Linear curve<br>1: User-defined curve<br>2: 1.3 square<br>torque-step-down<br>curve<br>3: 1.7 square<br>torque-step-down<br>curve<br>4: 2 square<br>torque-step-down<br>curve |                 | 0                  | •                      |
| F4.01            | Torque boost                                     | 0.0 %(auto) 0.1%~30.0%                                                                                                                                                           | 0.10%           | 1.00%              | 0                      |
| F4.02            | Torque boost<br>cut-off frequency                | 0.0~50.0% (relative to motor rated frequency)                                                                                                                                    | 0.10%           | 20.00%             | •                      |
| F4.03            | V/F frequency 1                                  | 0.00Hz~F4.05                                                                                                                                                                     | 0.01Hz          | 0.00Hz             | •                      |
| F4.04            | V/F voltage 1                                    | 0.0%~100.0%                                                                                                                                                                      | 0.10%           | 0.00%              | •                      |
| F4.05            | V/F frequency 2                                  | F4.03~F4.07                                                                                                                                                                      | 0.01Hz          | 25.00Hz            | •                      |

| Function<br>Code | Function                                                     | Descriptions                                                                | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| F4.06            | V/F voltage 2                                                | 0.0%~100.0%                                                                 | 0.10%           | 50.00%             | •                      |
| F4.07            | V/F frequency 3                                              | F4.05~motor rated frequency                                                 | 0.01Hz          | 50.00Hz            | •                      |
| F4.08            | V/F voltage 3                                                | 0.0%~100.0%                                                                 | 0.10%           | 100.00%            | •                      |
| F4.09            | Coefficient of V/F<br>Slip compensation                      | 0.0%~200.0%                                                                 | 0.10%           | 0.00%              | 0                      |
| F4.10            | Energy-saving selection                                      | 0:Disabled<br>1:Enabled automatically                                       |                 | 0                  | 0                      |
| F4.11            | Reserved                                                     |                                                                             |                 |                    |                        |
| F4.12            | Low-frequency<br>threshold of<br>restraining<br>oscillation  | 0~10                                                                        |                 | 2                  | 0                      |
| F4.13            | High-frequency<br>threshold of<br>restraining<br>oscillation | 0~10                                                                        |                 | 0                  | 0                      |
| F4.14            | Reserved                                                     |                                                                             |                 |                    |                        |
| F4.15            | Boundary<br>frequency of<br>restraining<br>oscillation       | 0.00Hz~F0.10 (Maxi.<br>frequency)                                           | 0.01Hz          | 30.00Hz            | 0                      |
| F4.16            | Reserved                                                     |                                                                             |                 |                    |                        |
| F4.17            | AVR function selection                                       | 0:Invalid<br>1:Valid all the time<br>2: Only invalid during<br>deceleration |                 | 1                  | 0                      |
|                  | F                                                            | 5 Group: Input Terminals                                                    | Parameters      |                    |                        |

| Function<br>Code | Function                | Descriptions                                                                                                                                                                                                | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| F5.00            | M1 terminal<br>function | 0:Invalid 1:Forward run<br>(FWD) 2:Reverse run<br>(REV)<br>3:3-wire control<br>4:Forward jog run<br>(FJOG)<br>5:Reverse jog run                                                                             |                 | 1                  | •                      |
| F5.01            | M2 terminal function    | <ul> <li>(RJOG)</li> <li>6: Coast to stop</li> <li>7: Fault reset (RESET)</li> <li>8: Pause running</li> <li>9: External fault input N.</li> <li>O.</li> <li>10: UP Key command</li> </ul>                  |                 | 2                  | •                      |
| F5.02            | M3 terminal function    | <ul> <li>11: DOWN Key</li> <li>command</li> <li>12: Clear UP/DOWN</li> <li>setting</li> <li>13: Frequency setting</li> <li>source switch between X</li> <li>and Y</li> <li>14: Frequency setting</li> </ul> |                 | 7                  | •                      |
| F5.03            | M4 terminal function    | source switch between X<br>and (X+Y)<br>15: Frequency setting<br>source switch between Y<br>and (X+Y)<br>16: Multi-step speed<br>terminal 1 17: Multi-step                                                  |                 | 0                  | •                      |

| Function<br>Code | Function                                                                                                                         | Descriptions                                                                                                                                                                                                                                                                              | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| F5.04            | M5 terminal function                                                                                                             | speed terminal 2 18:<br>Multi-step speed terminal<br>3<br>19: Multi-step speed<br>terminal 4 20: Multi-step<br>speed pause<br>21:<br>Acceleration/deceleration<br>time selection terminal 1<br>22:<br>Acceleration/deceleration<br>time selection terminal 2<br>23: Restart simple PLC af |                 | 0                  | •                      |
| F5.05            | M6 terminal function                                                                                                             | ter pause<br>24: Simple PLC pause<br>25: PID pause<br>26: Swing frequency<br>pause (maintain at current<br>frequency)<br>27: Reset after swing<br>frequency pause (reset to<br>central frequency)<br>28: Counter reset<br>29:Reserved                                                     |                 | 0                  | •                      |
| F5.06 ~<br>F5.08 | Reserved                                                                                                                         | 30:Acceleration/decelerat                                                                                                                                                                                                                                                                 |                 |                    |                        |
| F5.09            | VDI Virtual Input<br>terminal<br>function(Note:<br>VDI input is VDO<br>output, without<br>limit by On/off<br>filter times F5.10) | <ul> <li>31:Counter triggering</li> <li>32:Clear UP/DOWN</li> <li>setting temporarily</li> <li>33: Reserved</li> <li>34: Length counting</li> <li>input</li> <li>35: Length counting clear</li> <li>up</li> <li>36: Command source</li> <li>switch</li> </ul>                             |                 | 0                  | •                      |

| Function<br>Code | Function                                                                | Descriptions                                                                                                                                                                                                                                                                                              | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
|                  |                                                                         | <ul> <li>37: Terminal input delay<br/>output</li> <li>38: Toggling PID control<br/>characteristic (F9.03)</li> <li>39: Switching PID<br/>parameters</li> <li>40: Pausing PID<br/>integration</li> <li>41: Output DC<br/>brake(Braking current is<br/>determined by value<br/>setting of F1.03)</li> </ul> |                 |                    |                        |
| F5.10            | On/off filter times                                                     | 1~10                                                                                                                                                                                                                                                                                                      |                 | 5                  | 0                      |
| F5.11            | Terminal control mode                                                   | 0:2-wire control mode 1<br>2:2-wire control mode 2<br>3:3-wire control mode 1<br>4:3-wire control mode 2                                                                                                                                                                                                  |                 | 0                  | •                      |
| F5.12            | Frequency<br>changing rate<br>through UP/<br>DOWN terminal<br>adjusting | 0.01~50.00Hz/s                                                                                                                                                                                                                                                                                            | 0.01Hz/s        | 0.50Hz/s           | 0                      |
| F5.13            | AVI lower limit                                                         | 0.00V~10.00V                                                                                                                                                                                                                                                                                              | 0.01V           | 0.00V              | 0                      |
| F5.14            | Setting value<br>corresponding to<br>AVI lower limit                    | -100.0%~100.0%                                                                                                                                                                                                                                                                                            | 0.10%           | 0.00%              | 0                      |
| F5.15            | AVI upper limit                                                         | 0.00V~10.00V                                                                                                                                                                                                                                                                                              | 0.01V           | 10.00V             | 0                      |
| F5.16            | Setting value<br>corresponding to<br>AVI upper limit                    | -100.0%~100.0%                                                                                                                                                                                                                                                                                            | 0.10%           | 100.00%            | 0                      |
| F5.17            | AVI input filter<br>time                                                | 0.00s~10.00s                                                                                                                                                                                                                                                                                              | 0.01s           | 0.10s              | 0                      |

| Function<br>Code | Function                                             | Descriptions                                                                                                                                                                    | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| F5.18            | ACI lower limit                                      | 0.0mA~20.0mA                                                                                                                                                                    | 0.1mA           | 4.0mA              | 0                      |
| F5.19            | ACI lower limit<br>corresponding to<br>setting value | -100.0%~100.0%                                                                                                                                                                  | 0.10%           | 0.00%              | 0                      |
| F5.20            | ACI upper limit                                      | 0.0mA~20.0mA                                                                                                                                                                    | 0.1mA           | 20.0mA             | 0                      |
| F5.21            | ACI upper limit<br>corresponding to<br>setting value | -100.0%~100.0%                                                                                                                                                                  | 0.10%           | 100.00%            | 0                      |
| F5.22            | ACI input filter time                                | 0.00s~10.00s                                                                                                                                                                    | 0.1s            | 0.10s              | 0                      |
| F5.23            | M1 On delay                                          | $0.0 \mathrm{s} \sim 6000.0 \mathrm{s}$                                                                                                                                         | 0.1s            | 0.0s               | 0                      |
| F5.24            | M1 Off delay                                         | $0.0\mathrm{s}\sim 6000.0\mathrm{s}$                                                                                                                                            | 0.1s            | 0.0s               | 0                      |
| F5.25            | M2 On delay                                          | $0.0\mathrm{s}\sim 6000.0\mathrm{s}$                                                                                                                                            | 0.1s            | 0.0s               | 0                      |
| F5.26            | M2 Off delay                                         | $0.0 \mathrm{s} \sim 6000.0 \mathrm{s}$                                                                                                                                         | 0.1s            | 0.0s               | 0                      |
| F5.27 ~<br>F5.30 | Reserved                                             |                                                                                                                                                                                 | I               | <u>I</u>           | I                      |
| F5.31            | VDI On delay                                         | $0.0\mathrm{s}\sim 6000.0\mathrm{s}$                                                                                                                                            | 0.1s            | 0.0s               | 0                      |
| F5.32            | VDI Off delay                                        | $0.0\mathrm{s}\sim 6000.0\mathrm{s}$                                                                                                                                            | 0.1s            | 0.0s               | 0                      |
|                  | F                                                    | 6 Group: Output Terminals                                                                                                                                                       | Parameters      |                    |                        |
| F6.00            | MO1 output selection                                 | 0:No output<br>1:Motor forward running                                                                                                                                          |                 | 1                  | 0                      |
| F6.01            | VDO output<br>options(For input<br>of VDI)           | 2:Motor reverse running<br>3:Fault output<br>4: Frequency detecting<br>level FDT output<br>5:Frequency reached<br>6:Running at zero speed<br>7:Upper limit frequency<br>reached |                 | 0                  | 0                      |

| Function<br>Code | Function                    | Descriptions                                                                                                                                                                                                                                                                                                                                                  | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| F6.02            | Relay 1 output<br>selection | 8:Lower limit frequency<br>reached<br>9:Frequency setting value<br>less than lower limit<br>frequency<br>10:FDT reached                                                                                                                                                                                                                                       |                 | 3                  | 0                      |
| F6.03            | Reserved                    | <ul> <li>11: Accumulative running</li> <li>11: Accumulative running</li> <li>time reached</li> <li>12: PLC cycle completed</li> <li>13: VFD overload</li> <li>pre-alarm</li> <li>14: User customized</li> <li>output</li> <li>15: Running frequency</li> <li>detection</li> <li>16: Terminal input delay</li> <li>output</li> <li>17: VFD stand-by</li> </ul> |                 | 0                  | 0                      |
| F6.04            | FM output<br>selection      | 0:Running frequency<br>1:Setting frequency<br>2:Running rotation speed<br>3:Output current<br>4:Output voltage<br>5:Reserved<br>6:Reserved<br>7:Reserved<br>8: Analog AVI input<br>value<br>9: Analog ACI input<br>value                                                                                                                                      |                 | 0                  | 0                      |
| F6.05            | FM output lower<br>limit    | 0.0~100.0%                                                                                                                                                                                                                                                                                                                                                    | 0.10%           | 0.00%              | 0                      |

| Function<br>Code | Function                                     | Descriptions                                                                                                                                                                                                             | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| F6.06            | FM lower limit<br>corresponding to<br>output | 0.00V~10.00V                                                                                                                                                                                                             | 0.01V           | 0.00V              | 0                      |
| F6.07            | FM output upper<br>limit                     | 0.0~100.0%                                                                                                                                                                                                               | 0.10%           | 100.00%            | 0                      |
| F6.08            | FM upper limit<br>corresponding to<br>output | 0.00V~10.00V                                                                                                                                                                                                             | 0.01V           | 10.00V             | 0                      |
| F6.09            | AM output<br>selection                       | 0:Running frequency<br>1:Setting frequency<br>2:Running rotation speed<br>3:Output current<br>4:Output voltage<br>5:Reserved<br>6:Reserved<br>7:Reserved<br>8: Analog AVI input<br>value<br>9: Analog ACI input<br>value |                 | 0                  | 0                      |
| F6.10            | AM output lower<br>limit                     | 0.0~100.0%                                                                                                                                                                                                               | 0.10%           | 0.00%              | 0                      |
| F6.11            | AM lower limit<br>corresponding to<br>output | 0.00V~10.00V                                                                                                                                                                                                             | 0.01V           | 0.00V              | 0                      |
| F6.12            | AM output upper<br>limit                     | 0.0~100.0%                                                                                                                                                                                                               | 0.10%           | 100.00%            | 0                      |
| F6.13            | AM upper limit<br>corresponding to<br>output | 0.00V~10.00V                                                                                                                                                                                                             | 0.01V           | 10.00V             | 0                      |

| Function<br>Code | Function                                             | Descriptions                                                                                                                                                                                                                                                                                          | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| F6.14            | User defined<br>output<br>variability option<br>(EX) | 0:Running frequency<br>1:Setting frequency<br>2:DC bus voltage<br>3:Output current<br>4:Output voltage<br>5:Sign of start and stop<br>status<br>6:Sign of control status<br>7:Counter value<br>8:Counting meter value<br>9:Inverter module<br>temperature<br>10:AVI input value<br>11:ACI input value |                 |                    |                        |
| F6.15            | Comparison<br>method of user<br>defined output       | Units digit: comparison<br>test<br>method<br>0: Equal (EX==X1)<br>1: Equal or greater than<br>2: Equal or less than<br>3: Interval comparison<br>(X1≤EX≤X2)<br>4:Units digit test<br>(EX&X1=X2)<br>Tens digit : output<br>method<br>0: False value output<br>1: Real value output                     |                 | 0                  | ο                      |
| F6.16            | User defined<br>output dead zone                     | 0~65535                                                                                                                                                                                                                                                                                               |                 | 0                  | 0                      |
| F6.17            | Output comparison value X1                           | 0~65535                                                                                                                                                                                                                                                                                               |                 | 0                  | 0                      |

| Function<br>Code | Function                              | Descriptions                                                                                                                                                                                                         | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| F6.18            | Output comparison value X2            | 0~65535                                                                                                                                                                                                              |                 | 0                  | 0                      |
|                  | F                                     | 7 Group: Display Interface                                                                                                                                                                                           | Parameters      |                    |                        |
| F7.00            | User password                         | 0~9999                                                                                                                                                                                                               |                 | 0                  | 0                      |
| F7.01            | Parameter group<br>hiding             | 0000~FFFF                                                                                                                                                                                                            |                 | 0000               | 0                      |
| F7.02            | Reserved                              |                                                                                                                                                                                                                      |                 |                    |                        |
| F7.03            | REV/JOG<br>key function               | 0:Switch display status<br>1:Clear UP/DOWN<br>setting<br>2:Reverse running<br>3:Forward jog running<br>4:Quick debugging mode                                                                                        |                 | 2                  | •                      |
| F7.04            | STOP/RESET key<br>stop function       | 0:Only valid for keypad<br>setting<br>1:Valid for both keypad<br>setting and terminals<br>setting<br>2:Valid for both keypad<br>setting and<br>communication interface<br>setting<br>3:Valid for all control<br>mode |                 | 0                  | 0                      |
| F7.05            | Reserved                              |                                                                                                                                                                                                                      |                 |                    |                        |
| F7.06            | Running status<br>display selection 1 | 0~0xFFFF<br>BIT0:Running frequency<br>BIT1:Setting frequency<br>BIT2:DC bus voltage<br>BIT3:Output voltage<br>BIT4:Output current<br>BIT5:Running speed                                                              |                 | 35                 | 0                      |

| Function<br>Code | Function                                 | Descriptions                                                                                                                                                                                                                                                                                           | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
|                  |                                          | BIT6:Linear speed<br>BIT7:Reserved<br>BIT8:Reserved<br>BIT9:PID setting value<br>BIT10:PID feedback<br>value<br>BIT11:Input terminals<br>status<br>BIT12:Output terminals<br>status<br>BIT13:Reserved<br>BIT13:Reserved<br>BIT14:Counter value<br>BIT15:Current step of<br>multi-step<br>speed and PLC |                 |                    |                        |
| F7.07            | Running<br>status display<br>selection 2 | 1~0xFFFF<br>BIT0:AVI value<br>BIT1: ACI value<br>BIT2:Reserved<br>BIT3: Motor overload<br>ratio<br>BIT4: Inverter overload<br>ratio<br>BIT5:Running time<br>BIT5:Running meter<br>value<br>BIT7~BIT15: Reserved                                                                                        |                 | 0                  | 0                      |

| Function<br>Code                        | Function                         | Descriptions                                                                                                                                                                                                                                                                                                                                                              | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|-----------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| F7.08                                   | Stop status display<br>selection | 0~0xFFFF<br>BIT0: Setting frequency<br>BIT1: DC bus voltage<br>BIT2:Input terminal<br>status<br>BIT3:Output terminal<br>status<br>BIT4:PID setting value<br>BIT5:PID feedback value<br>BIT6:AVI value<br>BIT7:ACI value<br>BIT7:ACI value<br>BIT9: Current step of<br>multi-step speed and PLC<br>BIT10:Reserved<br>BIT11:Counting meter<br>value<br>BIT12~BIT15:Reserved |                 | 3                  | 0                      |
| F7.09                                   | Inverter module<br>temperature   | 0~100℃                                                                                                                                                                                                                                                                                                                                                                    | 1℃              |                    | Ø                      |
| F7.10                                   | Inverter software version        |                                                                                                                                                                                                                                                                                                                                                                           |                 |                    | O                      |
| F7.11                                   | Accumulative<br>running time     | 0~9999h                                                                                                                                                                                                                                                                                                                                                                   | 1hour           |                    | O                      |
| F7.12                                   | Accumulative power-on time       | 0~9999h                                                                                                                                                                                                                                                                                                                                                                   | 1 hour          |                    | O                      |
| F7.13                                   | Reserved                         |                                                                                                                                                                                                                                                                                                                                                                           |                 |                    |                        |
| F8 Group: Auxiliary Function Parameters |                                  |                                                                                                                                                                                                                                                                                                                                                                           |                 |                    |                        |
| F8.00                                   | Jog running<br>frequency         | 0.00~F0.10                                                                                                                                                                                                                                                                                                                                                                | 0.01Hz          | 5.00Hz             | 0                      |
| F8.01                                   | Jog running                      | 0.1~3600s                                                                                                                                                                                                                                                                                                                                                                 | 0.1s            | Defined by         | 0                      |

| Function<br>Code | Function                             | Descriptions                              | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|--------------------------------------|-------------------------------------------|-----------------|--------------------|------------------------|
|                  | acceleration time                    |                                           |                 | inverter           |                        |
| F8.02            | Jog running<br>deceleration time     | 0.1~3600s                                 | 0.1s            | model              | 0                      |
| F8.03            | Acceleration time 2                  | 0.1~3600s                                 | 0.1s            |                    | 0                      |
| F8.04            | Deceleration time 2                  | 0.1~3600s                                 | 0.1s            |                    | 0                      |
| F8.05            | Acceleration time 3                  | 0.1~3600s                                 | 0.1s            |                    | 0                      |
| F8.06            | Deceleration time 3                  | 0.1~3600s                                 | 0.1s            |                    | 0                      |
| F8.07            | Acceleration time<br>4               | 0.1~3600s                                 | 0.1s            |                    | 0                      |
| F8.08            | Deceleration time<br>4               | 0.1~3600s                                 | 0.1s            |                    | 0                      |
| F8.09            | Jump frequency 1                     | 0.00~F0.10                                | 0.01Hz          | 0.00Hz             | 0                      |
| F8.10            | Jump frequency 2                     | 0.00~F0.10                                | 0.01Hz          | 0.00Hz             | 0                      |
| F8.11            | Jump frequency<br>width              | 0.00~F0.10                                | 0.01Hz          | 0.00Hz             | 0                      |
| F8.12            | Frequency<br>detection<br>value(FDT) | 0.00~F0.10                                | 0.01Hz          | 50.00Hz            | 0                      |
| F8.13            | FDT hysteresis                       | 0.0~100.0%                                | 0.10%           | 5.00%              | 0                      |
| F8.14            | Detecting range of reached frequency | 0.0~100.0% (Maxi.<br>Frequency)           | 0.10%           | 0.00%              | 0                      |
| F8.15            | Braking threshold voltage            | 115.0~140.0% (Standard<br>DC bus voltage) | 0.10%           | 120.00%            | 0                      |
| F8.16            | Speed display<br>coefficient         | 0.1~999.9%                                | 0.10%           | 100.00%            | 0                      |

| Function<br>Code                   | Function                                                 | Descriptions                                               | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |  |
|------------------------------------|----------------------------------------------------------|------------------------------------------------------------|-----------------|--------------------|------------------------|--|
| 8.17                               | Option as running<br>time reached                        | 0:Keep running<br>1:Stop                                   |                 | 0                  | 0                      |  |
| F8.18                              | Running time setting                                     | 0~9999h                                                    | 1h              | 9999               | 0                      |  |
| F8.19                              | Droop control                                            | 0.00Hz~10.00Hz                                             | 0.01Hz          | 0.00Hz             | 0                      |  |
| F8.20                              | Panel<br>potentiometer filter<br>time selection          | 0.00~10.00s                                                | 0.01s           | 0.10s              | 0                      |  |
| F8.21                              | Output delay time selection                              | 0~9999s                                                    | 0.1s            | 0.0s               | 0                      |  |
| F8.22                              | Lower limit of<br>frequency<br>detecting                 | 0.00~Maxi. Frequency                                       | 0.01Hz          | 20.00Hz            | 0                      |  |
| F8.23                              | Upper limit of<br>frequency<br>detecting                 | 0.00~Maxi. Frequency                                       | 0.01Hz          | 40.00Hz            | 0                      |  |
| F8.24                              | Reserved                                                 |                                                            |                 |                    |                        |  |
| F8.25                              | Inverter rated power                                     | 0.4~700.0kW                                                | 0.1kW           | Defined by         | O                      |  |
| F8.26                              | Inverter rated current                                   | 0.0~2000A                                                  | 0.1A            | model              | 0                      |  |
| F8.27                              | Linear speed<br>display coefficient                      | 0.1~999.9% (linear speed<br>= mechanical speed *<br>F8.27) | 0.10%           | 1.00%              | 0                      |  |
| F8.28 ~<br>F8.29                   | $ \begin{array}{c} F8.28 \\ F8.29 \end{array} Reserved $ |                                                            |                 |                    |                        |  |
| F9/FE Group PID Control Parameters |                                                          |                                                            |                 |                    |                        |  |

| Function<br>Code | Function                       | Descriptions                                                                                                                                     | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| F9.00            | PID setting source             | 0:Keypad (F9.01)<br>1:Analog terminal AVI<br>2:Analog terminal ACI<br>3:Communication<br>interface<br>4:Muli-function digital<br>input terminals |                 | 0                  | 0                      |
| F9.01            | PID preset value               | 0.0%~100.0%                                                                                                                                      | 0.10%           | 0.00%              | •                      |
| F9.02            | PID feedback<br>selection      | 0:Analog terminal AVI<br>1:Analog terminal ACI<br>2:AVI+ACI<br>3:Communication<br>interface                                                      |                 | 0                  | 0                      |
| F9.03            | PID output<br>characteristic   | 0: Positive<br>1: Negative                                                                                                                       |                 | 0                  | 0                      |
| F9.04            | Proportional gain<br>(Kp1)     | 0.0~100.0                                                                                                                                        | 0.1             | 20.0               | 0                      |
| F9.05            | Integral time (Ti1)            | 0.01~10.00s                                                                                                                                      | 0.01s           | 2.00s              | 0                      |
| F9.06            | Differential time<br>(Td1)     | 0.00~10.00s                                                                                                                                      | 0.01s           | 0.00s              | 0                      |
| F9.07            | Sampling period<br>(T)         | 0.01~100.0s                                                                                                                                      | 0.01s           | 0.10s              | 0                      |
| F9.08            | PID control<br>deviation limit | 0.0~100.0%                                                                                                                                       | 0.10%           | 0.00%              | 0                      |
| F9.09            | Feedback loss detecting time   | 0.0~100.0%                                                                                                                                       | 0.10%           | 0.00%              | 0                      |
| F9.10            | Feedback lost detecting time   | 0.0~3600.0s                                                                                                                                      | 0.1s            | 1.0s               | 0                      |
| F9.11            | PID sleep function option      | 0: PID normal working<br>1: PID sleep                                                                                                            |                 | 0                  | 0                      |

| Function<br>Code | Function                                               | Descriptions   | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|--------------------------------------------------------|----------------|-----------------|--------------------|------------------------|
| F9.12            | PID sleep detecting<br>delay time                      | 0.0~3600.0s    | 0.1s            | 3.0s               | 0                      |
| F9.13            | PID wake-up<br>threshold                               | 0.0~100.0%     | 0.10%           | 0.00%              | 0                      |
| F9.14            | PID wake-up<br>detecting delay<br>time                 | 0.0~3600.0s    | 0.1s            | 3.0s               | 0                      |
| F9.15            | Lower retaining<br>frequency of PID<br>sleep detecting | 0.00Hz~20.00Hz | 0.01Hz          | 10.00Hz            | 0                      |
| F9.16            | PID Lower<br>retaining<br>frequency running<br>time    | 0.0s~3600.0s   | 0.1s            | 10.0s              | 0                      |
| F9.17            | PID sleep<br>threshold                                 | F9.13~100.0%   | 0.1%            | 80.0%              |                        |
| F9.18            | Reserved                                               |                |                 |                    |                        |
| FE.00            | Proportional gain<br>(Kp2)                             | 0.0~100.0      | 0.1             | 20.0               | 0                      |
| FE.01            | Integral time (Ti2)                                    | 0.01~10.00s    | 0.01s           | 2.00s              | 0                      |
| FE.02            | Differential time<br>(Td2)                             | 0.00~10.00s    | 0.01s           | 0.00s              | 0                      |
| FE.03            | PID parameters<br>switching<br>condition               | 0~2            |                 | 0                  | 0                      |
| FE.04            | PID parameter<br>switching<br>deviation 1              | 0.0%~FE.05     | 0.1%            | 20.0%              | 0                      |
| FE.05            | PID parameter<br>switching<br>deviation 2              | FE.04~100.0%   | 0.1%            | 80.0%              | 0                      |

| Function<br>Code | Function                                              | Descriptions                                                                                                                                                              | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |  |  |
|------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|--|--|
| FE.06            | PID initial value                                     | 0.0%~100.0%                                                                                                                                                               | 0.1%            | 0.0%               | 0                      |  |  |
| FE.07            | PID initial value<br>time                             | 0.00s~650.00s                                                                                                                                                             | 0.01s           | 0.00s              | 0                      |  |  |
| FE.08            | PID integration options                               | Unit's digit: Integration<br>separation<br>0: Disabled<br>1: Enabled<br>Ten's place: Output limit<br>and stop options<br>0: Continuing calculation<br>1: Stop calculation |                 | 00                 | 0                      |  |  |
| FE.09            | Max. increasing<br>value permitted<br>each PID output | 0.00%~100.00%                                                                                                                                                             | 0.01%           | 1.00%              | 0                      |  |  |
| FE.10            | Max. decreasing<br>value permitted<br>each PID output | 0.00%~100.00%                                                                                                                                                             | 0.01%           | 1.00%              | 0                      |  |  |
| FE.11            | PID reverse output<br>frequency limit                 | 0.00Hz~F0.10                                                                                                                                                              | 0.01Hz          | 0.00Hz             | 0                      |  |  |
| FE.12            | PID differentiation limit                             | 0.00%~100.0%                                                                                                                                                              | 0.01%           | 0.10%              | 0                      |  |  |
| FE.13            | PID setting value time                                | 0.00s~650.0s                                                                                                                                                              | 0.01s           | 0.00s              | 0                      |  |  |
| FE.14            | PID feedback filter time                              | 0.00s~60.00s                                                                                                                                                              | 0.01            | 0.00s              | 0                      |  |  |
| FE.15            | PID output filter time                                | 0.00s~60.00s                                                                                                                                                              | 0.01            | 0.00s              | 0                      |  |  |
| FE.16            | PID calculation<br>options during<br>VFD stop         | 0: Stop calculation<br>1: Continuing calculation                                                                                                                          |                 | 0                  | 0                      |  |  |
|                  | FA Group: Protection and Malfunction Parameters       |                                                                                                                                                                           |                 |                    |                        |  |  |

| Function<br>Code | Function                                                                 | Descriptions                                                                                                                   | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| FA.00            | Motor overload<br>protection                                             | 0:Disabled<br>1:Normal motor with low<br>speed compensation<br>2:Variable frequency<br>motor without low speed<br>compensation |                 | 2                  | •                      |
| FA.01            | Motor over load protection current                                       | 20.0%~120.0% (motor rated current)                                                                                             | 0.10%           | 100.00%            | 0                      |
| FA.02            | Threshold for<br>frequency reducing<br>at instantaneous<br>power failure | 70.0%~110.0% (standard<br>bus voltage)                                                                                         | 0.10%           | 80.00%             | 0                      |
| FA.03            | Frequency<br>reducing rate at<br>instantaneous<br>power failure          | 0.00Hz~F0.10                                                                                                                   | 0.01Hz          | 0.00Hz             | 0                      |
| FA.04            | Over-voltage<br>stalling protection                                      | 0:Disabled<br>1:Enabled                                                                                                        |                 | 0                  | 0                      |
| FA.05            | Over-voltage<br>stalling protection<br>point                             | 110~150%                                                                                                                       | 1%              | 120%               | 0                      |
| FA.06            | Auto current<br>limiting level                                           | 50~200%                                                                                                                        | 1%              | 160%               | 0                      |
| FA.07            | Frequency<br>decrease rate<br>during current<br>limiting                 | 0.00~50.00Hz/s                                                                                                                 | 0.01Hz/s        | 10.00Hz/s          | 0                      |
| FA.08            | Auto current<br>limiting selection                                       | 0:Enabled<br>1: Disabled at constant<br>speed                                                                                  |                 | 1                  | 0                      |

| Function<br>Code | Function                              | Descriptions                                                                                                                                                                                                                                                                                                                                              | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| FA.09            | Fault auto-reset<br>times             | 0~3                                                                                                                                                                                                                                                                                                                                                       |                 | 0                  | 0                      |
| FA.10            | Fault auto-reset interval             | 0.1~100.0s                                                                                                                                                                                                                                                                                                                                                | 0.1s            | 1.0s               | 0                      |
| FA.11            | Reserved                              |                                                                                                                                                                                                                                                                                                                                                           |                 |                    |                        |
| FA.12            | Phase-lack<br>protection of input     | 0:Disabled<br>1:Enabled                                                                                                                                                                                                                                                                                                                                   |                 | 1                  | 0                      |
| FA.13            | Phase-lack<br>protection of<br>output | 0: Disabled<br>1:Enabled                                                                                                                                                                                                                                                                                                                                  |                 | 1                  | 0                      |
| FA.14            | Fault type last two time              | 0: No fault<br>1: Inverter module fault<br>(E001)                                                                                                                                                                                                                                                                                                         |                 |                    | O                      |
| FA.15            | Fault type last time                  | 2. Over-current during<br>acceleration<br>(E002)                                                                                                                                                                                                                                                                                                          |                 |                    | 0                      |
| FA.16            | Current fault type                    | 3: Over-current during<br>deceleration<br>(E003)<br>4: Over-current at<br>constant speed (E004)<br>5: Over-voltage during<br>acceleration<br>(E005)<br>6: Over-voltage during<br>deceleration (E006)<br>7: Over-voltage at<br>constant<br>speed (E007)<br>8: Hardware overvoltage<br>(E008)<br>9: Under voltage of DC<br>bus (E009)<br>10: Drive overload |                 |                    | Ø                      |

| Function<br>Code | Function                              | Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
|                  |                                       | <ul> <li>(E010)</li> <li>11: Motor overload</li> <li>(E011)</li> <li>12: Phase-lack of input</li> <li>(E012)</li> <li>13: Phase-lack of output</li> <li>(E013)</li> <li>14: Module overheat</li> <li>(E014)</li> <li>15: External fault (E015)</li> <li>16: Communication fault</li> <li>(E016)</li> <li>17: Reserved</li> <li>18: Current detection</li> <li>fault (E018)</li> <li>19: Motor auto-tuning</li> <li>fault (E019)</li> <li>20: Reserved</li> <li>21: Reserved</li> <li>22: EEPROM fault</li> <li>(E022)</li> <li>23: Overload pre-alarm</li> <li>(E023)</li> <li>24: PID feedback loss</li> <li>fault (E024)</li> <li>25: Running time reached</li> <li>(E025)</li> <li>26: Counting meter</li> <li>reached</li> <li>(FULL)</li> </ul> |                 |                    |                        |
| FA.17            | Running frequency<br>at current fault |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hz              |                    | O                      |
| FA.18            | Output current at current fault       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | А               |                    | O                      |

| Function<br>Code | Function                                        | Descriptions                                                                          | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|-------------------------------------------------|---------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| FA.19            | DC bus voltage at current fault                 |                                                                                       | V               | 0.0V               | O                      |
| FA.20            | Input terminal<br>status when fault<br>occurs   |                                                                                       |                 | 0                  | O                      |
| FA.21            | Output terminal<br>status when fault<br>occurs  |                                                                                       |                 | 0                  | Ø                      |
|                  | FB Group: S                                     | wing Frequency and Coun                                                               | ting Meter Pa   | rameters           |                        |
| FB.00            | Swing frequency range                           | 0.0~100.0% (relative to setting frequency)                                            | 0.10%           | 0.00%              | 0                      |
| FB.01            | Skip frequency<br>range                         | 0.0~50.0% (relative to<br>swing frequency<br>bandwidth)                               | 0.10%           | 0.00%              | 0                      |
| FB.02            | Rising time of swing frequency                  | 0.1~3600.0s                                                                           | 0.1s            | 5.0s               | 0                      |
| FB.03            | Dropping time of swing frequency                | 0.1~3600.0s                                                                           | 0.1s            | 5.0s               | 0                      |
| FB.04            | Fixed length control mode                       | 0:Start from zero when<br>power on<br>1:Start from counting<br>meter of the last time | 0.1s            | 5.0s               | 0                      |
| FB.05            | Roller perimeter<br>for fixed length<br>control | 0~9999cm                                                                              | 1cm             | 100cm              | 0                      |
| FB.06            | Fixed length<br>setting                         | 0~9999m                                                                               | 1m              | 1000m              | 0                      |
| FB.07            | Clear length value                              | 0:Invalid 1:Valid                                                                     |                 | 0                  | 0                      |
#### WECON TECHNOLOGY CO., LTD.

| Function<br>Code | Function                                | Descriptions                                                                                                                                                                                                                                                                                                   | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| FB.08            | Counter value setting                   | FB.09~9999                                                                                                                                                                                                                                                                                                     |                 | 0                  | 0                      |
| FB.09            | Designated counter value                | )~FB.08                                                                                                                                                                                                                                                                                                        |                 | 0                  | 0                      |
| FB.10            | Length unit<br>selection                | 0 :Actual counting length<br>=<br>displayed length* 1m<br>1: Actual counting<br>length=<br>displayed length* 10m                                                                                                                                                                                               |                 | 0                  | 0                      |
|                  | FC Gr                                   | oup: RS485 Communicat                                                                                                                                                                                                                                                                                          | tion Paramet    | ters               |                        |
| FC.00            | Local address                           | 1~247, 0 refers to the broadcast address                                                                                                                                                                                                                                                                       |                 | 1                  | 0                      |
| FC.01            | Baud rate selection                     | 0:1200BPS<br>1:2400BPS<br>2:4800BPS<br>3:9600BPS<br>4:19200BPS<br>5:38400BPS                                                                                                                                                                                                                                   |                 | 3                  | 0                      |
| FC.02            | Data bit check and format               | <ul> <li>0: No check (N, 8, 1) for<br/>RTU</li> <li>1: Even parity check (E,<br/>8, 1) for RTU</li> <li>2: Odd parity check (0, 8,<br/>1) for RTU</li> <li>3: No check (N, 8, 2) for<br/>RTU</li> <li>4: Even parity check (E,<br/>8, 2) for RTU</li> <li>5: Odd parity check (0, 8,<br/>2) for RTU</li> </ul> |                 | 0                  | 0                      |
| FC.03            | Communication<br>response delay<br>time | 0~200ms                                                                                                                                                                                                                                                                                                        | 1ms             | 5ms                | 0                      |

#### WECON TECHNOLOGY CO., LTD.

| Function<br>Code | Function                                                 | Descriptions                                                                                                                                                                            | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|
| FC.04            | Communication<br>timeout fault<br>setting                | 0.0 (invalid), 0.1~100.0s                                                                                                                                                               | 0.1s            | 0.0s               | 0                      |
| FC.05            | Method of<br>disposing<br>communication<br>timeout fault | 0:Alarm and coast to stop<br>1:No alarm and continue<br>to run<br>2:No alarm but stop<br>according to<br>F1.05 (only when F0.01=<br>2)<br>3: No alarm but stop<br>according<br>to F1.05 |                 | 1                  | 0                      |
| FC.06            | Transmission<br>response action                          | Unit's digit:<br>D: Response to writing<br>I: No response to writing<br>Fen's place:<br>D:Value not saved when<br>poweroff<br>I: Value saved when<br>power-off                          |                 | 0                  | 0                      |
|                  | FD Group                                                 | Multi-step Speed and Sim                                                                                                                                                                | ple PLC Para    | meters             |                        |
| FD.00            | Simple PLC operation method                              | 0:Stop after operation<br>once time 1:Keep the f<br>inal value af ter operation<br>once time 2:Operation in<br>cycles                                                                   |                 | 0                  | 0                      |
| FD.01            | Memory option of<br>simple PLC when<br>power-off         | 0: Invalid 1:Valid                                                                                                                                                                      |                 | 0                  | 0                      |
| FD.02            | Multi-step speed 0                                       | -100~100%                                                                                                                                                                               | 0.10%           | 0.00%              | 0                      |
| FD.03            | 0 <sup>th</sup> step running<br>time                     | 0.0~6553s(m)                                                                                                                                                                            | 0.1s(m)         | 0.0s               | 0                      |

| Function<br>Code | Function                             | Descriptions Minimum<br>Unit |                         | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|--------------------------------------|------------------------------|-------------------------|--------------------|------------------------|
| FD.04            | Multi-step speed 1                   | -100~100%                    | 0.10%                   | 0.00%              | 0                      |
| FD.05            | 1 <sup>st</sup> step running<br>time | 0.0~6553s(m)                 | 0.1s(m)                 | 0.0s               | 0                      |
| FD.06            | Multi-step speed 2                   | -100~100%                    | 0.10%                   | 0.00%              | 0                      |
| FD.07            | 2 <sup>nd</sup> step running time    | 0.0~6553s(m)                 | 0.1s(m)                 | 0.0s               | 0                      |
| FD.08            | Multi-step speed 3                   | -100~100%                    | 0.10%                   | 0.00%              | 0                      |
| FD.09            | 3 <sup>rd</sup> step running<br>time | 0.0~6553s(m)                 | 3s(m) 0.1s(m) 0.0s      |                    | 0                      |
| FD.10            | Multi-step speed 4                   | -100~100%                    | 100~100% 0.10%          |                    | 0                      |
| FD.11            | 4 <sup>th</sup> step running<br>time | 0.0~6553s(m)                 | 0.1s(m)                 | 0.0s               | 0                      |
| FD.12            | Multi-step speed 5                   | -100~100%                    | .100~100% 0.10% 0.0     |                    | 0                      |
| FD.13            | 5 <sup>th</sup> step running<br>time | 0.0~6553s(m)                 | 0.1s(m)                 | 0.0s               | 0                      |
| FD.14            | Multi-step speed 6                   | -100~100%                    | 0.10%                   | 0.00%              | 0                      |
| FD.15            | 6 <sup>th</sup> step running<br>time | 0.0~6553s(m)                 | 0.1s(m)                 | 0.0s               | 0                      |
| FD.16            | Multi-step speed 7                   | -100~100%                    | 0.10% 0.00%             |                    | 0                      |
| FD.17            | 7 <sup>th</sup> step running<br>time | 0.0~6553s(m) 0.1s(m) 0.0s    |                         | 0.0s               | 0                      |
| FD.18            | Multi-step speed 8                   | -100~100%                    | 0.10% 0.00%             |                    | 0                      |
| FD.19            | 8 <sup>th</sup> step running<br>time | 0.0~6553s(m)                 | 0~6553s(m) 0.1s(m) 0.0s |                    | 0                      |

| Function<br>Code | Function                                         | Descriptions Minimum<br>Unit |                   | Factory<br>Setting | Modifica-<br>tion Type |
|------------------|--------------------------------------------------|------------------------------|-------------------|--------------------|------------------------|
| FD.20            | Multi-step speed 9                               | -100~100%                    | 0.10%             | 0.00%              | 0                      |
| FD.21            | 9 <sup>th</sup> step running<br>time             | 0.0~6553s(m)                 | 0.1s(m)           | 0.0s               | 0                      |
| FD.22            | Multi-step speed<br>10                           | -100~100%                    | 0.10%             | 0.00%              | 0                      |
| FD.23            | 10 <sup>th</sup> step running<br>time            | 0.0~6553s(m)                 | 0.1s(m)           | 0.0s               | 0                      |
| FD.24            | Multi-step speed<br>11                           | -100~100%                    | 0.10%             | 0.00%              | 0                      |
| FD.25            | 11 <sup>th</sup> step running<br>time            | 0.0~6553s(m)                 | 0.1s(m) 0.0s      |                    | 0                      |
| FD.26            | Multi-step speed<br>12                           | -100~100%                    | 0% 0.10% 0.00%    |                    | 0                      |
| FD.27            | 12 <sup>th</sup> step running<br>time            | 0.0~6553s(m)                 | 0.1s(m) 0.0s      |                    | 0                      |
| FD.28            | Multi-step speed<br>13                           | -100~100%                    | ~100% 0.10% 0.00% |                    | 0                      |
| FD.29            | 13 <sup>th</sup> step running<br>time            | 0.0~6553s(m)                 | 0.1s(m)           | 0.0s               | 0                      |
| FD.30            | Multi-step speed<br>14                           | -100~100%                    | 0.10%             | 0.00%              | 0                      |
| FD.31            | 14 <sup>th</sup> step running<br>time            | 0.0~6553s(m)                 | 0.1s(m)           | 0.0s               | 0                      |
| FD.32            | Multi-step speed<br>15                           | -100~100%                    | 0.10% 0.00%       |                    | 0                      |
| FD.33            | 15 <sup>th</sup> step running<br>time            | 0.0~6553s(m) 0.1s(m) 0.0s    |                   | 0.0s               | 0                      |
| FD.34            | Acceleration time of $0^{th} \sim 7^{th}$ steps  | 0~0xFFFF                     |                   | 0                  | 0                      |
| FD.35            | Acceleration time of $8^{th} \sim 15^{th}$ steps | 0~0xFFFF                     |                   | 0                  | 0                      |

| Function<br>Code                      | Function                | Descriptions                                                                         | Minimum<br>Unit | Factory<br>Setting | Modifica-<br>tion Type |  |  |
|---------------------------------------|-------------------------|--------------------------------------------------------------------------------------|-----------------|--------------------|------------------------|--|--|
| FD.36                                 | PLC restart method      | 0: Restart from 1 <sup>st</sup> step 1:<br>- 76 -est art from<br>break-off frequency | 0               | 0                  | 0                      |  |  |
| FD.37                                 | PLC operation time unit | 0: second (s) 1: minute<br>(m)                                                       |                 | 0                  | 0                      |  |  |
| FF Group: Reserved Factory Parameters |                         |                                                                                      |                 |                    |                        |  |  |

# **Chapter 5 Function Parameter Description**

# 5.1 F0 Group—Basic Function

|       | Control | Mode Selecti | on | Factory Setting       | 1    |
|-------|---------|--------------|----|-----------------------|------|
| F0.00 | Setting | 0            |    | Sensorless vector con | trol |
|       | Options | 1            |    | V/F control           |      |

Select one operation mode for the drive.

0: Sensorless vector control.

This mode refers to open loop vector control. It is suitable to high performance general applications of VFD without PG encoder feedback, such as machine tool, centrifugal machines, wire drawing bench, injection molding machine, etc. In this mode, one VFD can drive only one electric motor at a time.

#### 1: V/F control

V/F control is suitable to applications which do not require high accuracy of torque and speed control, such as fans and pumps etc. In those applications, a VFD can drive multiple motors simultaneously.

Note: When choosing vector control mode, it is necessary to perform motor parameter auto-tuning first. Only getting accurate motor parameters before driving a motor can achieve the advantage of vector control mode. And more optimized performance will be achieved by adjusting parameters of the speed regulator(in F3 group).

|       | Control command source |   |           | Factory Setting       | 0 |  |
|-------|------------------------|---|-----------|-----------------------|---|--|
| F0.01 | Setting<br>Options     | 0 |           | Keypad                |   |  |
|       |                        | 1 | Terminals |                       |   |  |
|       |                        | 2 |           | Communication (RS485) |   |  |

Select the channel of the control command of the VFD.

The control command of a VFD includes: start, stop, forward, reverse and jogging.

0: keypad

The command of start and stop can be executed through the key of RUN,REV, STOP/RESET on the keypad.

1: terminals

The VFD is controlled by multi-function digital input terminals  $M1 \sim M6$ .

2: communications

The upper controller gives the command of start and stop through the method of communication.

| F0.02 | Options f<br>ascen          | for key<br>ding a                                                                                                  | pad / terminals frequency<br>nd descending control | Factory<br>Setting             | 0 |  |
|-------|-----------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|---|--|
|       |                             | 0                                                                                                                  | Valid and save                                     | Valid and saved when power-off |   |  |
|       | Setting 1<br>Options 2<br>3 | 1                                                                                                                  | Valid and not saved when power-off                 |                                |   |  |
|       |                             | 2                                                                                                                  | Invalid                                            |                                |   |  |
|       |                             | Control is valid while running, and is invalid while stop<br>When stopped or power off, the VFD will not save data |                                                    |                                |   |  |

The frequency of the VFD can be set through " $\blacktriangle$ " and " $\blacktriangledown$ " and UP/DOWN terminal(frequency ascending control/frequency descending control), it has the highest priority and can be combined with any other channels used for frequency setting. Its main function is to finish the fine adjustment of output frequency of the VFD in commissioning process of control system.

0: valid, and the VFD can save data when powered off. The frequency data of VFD can be set, and after powered off, the VFD can save the set value. When powered on next time, the previous saved value can be combined with the present setting value automatically.

1: valid, but the VFD cannot save data when powered off. The frequency data of

VFD can be set, however after power-off, the VFD will not save this setting value.

2:invalid, the " $\blacktriangle$ " and " $\blacktriangledown$ " on keypad and the function of UP/DOWN terminal is invalid, and the settings will be cleared automatically.

3: When the VFD is in running condition, the control of " $\blacktriangle$ " and " $\blacktriangledown$ " on keypad and the function of UP/DOWN terminal is valid. When stopped, the settings of " $\blacktriangle$ " and " $\blacktriangledown$ " on keypad and the UP/DOWN terminal will be zeroed out.

Note: when users restore the default value of the functional parameters of the VFD, the setting frequency value of the keypad and UP/DOWN terminal will be zeroed out.

|       | Settings of maste | r frequency so          | ource X                     | Factory Setting        | 1    |  |  |
|-------|-------------------|-------------------------|-----------------------------|------------------------|------|--|--|
|       |                   | 0                       | Digital setting Up/down key |                        |      |  |  |
|       |                   | 1                       | Potentiometer of panel      |                        |      |  |  |
|       | 2                 | AVI terminal            |                             |                        |      |  |  |
|       | F0.03             | 3                       | ACI terminal                |                        |      |  |  |
| F0.03 |                   | 4                       | Reserved                    |                        |      |  |  |
|       | Setting Options   | 5                       | Reserved                    |                        |      |  |  |
|       |                   | 6 Multi-step speed term |                             | Multi-step speed termi | nals |  |  |
|       |                   | 7                       | Simple PLC                  |                        |      |  |  |
|       |                   | 8                       | PID                         |                        |      |  |  |
|       |                   | 9                       |                             | Communication interf   | ace  |  |  |

Select the input channel of master frequency of the VFD. Altogether 8 master frequency channels are available:

0: digital setting of the panel

The initial value is the value of F0.08 "keypad setting frequency".

The settings of frequency value of the VFD can be adjusted through  $\blacktriangle$  and  $\checkmark$  key and the multi-function digital input terminal UP/DOWN terminal.

1: settings by a potentiometer of the panel

#### 2: AVI

### 3: ACI

Options of AVI and ACI mean that the frequency is determined by one of the analog input terminals. A standard VFD unit has 2 analog input terminals, among them AVI is input by voltage  $0\sim10V$ ; by using jump line selection, ACI can be choosed in the way of  $0\sim10V$  voltage and  $0/4\sim20$ mA current.

- 4: Reserved
- 5: Reserved
- 6: Multi-step speed terminals

Select the running method of multi-function digital input. The parameters of F5 group "input terminals" and FD group "Multi-step Speed and Simple PLC Parameters" need to be set in order to determine the corresponding relation between the command signal and the command frequency.

7: Simple PLC

Select the mode of simple PLC. When the source of frequency is Simple PLC, the parameters of FD group "Multi-step Speed and Simple PLC Parameters" need to be set in order to determine the command frequency.

PID: Select PID control. And the F9 group "PID function" parameters need to be set. The running frequency of the VFD is the output of PID's function. As for the implication of PID setting source, preset value and feedback source etc please see the introduction of F9 group "PID function".

### Communication interface

This means the master source of frequency is given by the upper controller through communication methods.

| F0. 04 | Settings of auxil | iary frequency | source Y | Factory Setting | 0 |
|--------|-------------------|----------------|----------|-----------------|---|
|        | Setting Options   | 0              | AVI      |                 |   |
|        |                   | 1              | ACI      |                 |   |
|        |                   | 2              | Reserved |                 |   |

When the auxiliary frequency source is used as an independent frequency command channel(that is the selection of frequency changes from X to Y), its direction for usage is the same as master frequency source X.

| 50.05 | Setting range of auxi<br>when it i | liary freque<br>s superpose | ncy source Y<br>d              | Factory Setting      | 0       |
|-------|------------------------------------|-----------------------------|--------------------------------|----------------------|---------|
| F0.05 | Setting Options                    | 0                           | Relative to the max. frequency |                      |         |
|       | Setting Options                    | 1                           | Relative to th                 | e master frequency s | ource X |
| F0.06 | Reserved                           |                             |                                |                      |         |

When the frequency source is selected as superposed frequency source(set F0.07 as 1 or 3), the two parameters are used to determine the adjustable range of the auxiliary frequency source. F0.05 can determine the corresponding range reference for the auxiliary frequency source, if the corresponding object is the maximum frequency(F0.10), the range of the auxiliary frequency source will be fixed; if the corresponding object is the master frequency source X, the range of the auxiliary frequency source X.

|                        | F       | requen | cy reference selection                                               | Factory Setting | 0 |  |  |
|------------------------|---------|--------|----------------------------------------------------------------------|-----------------|---|--|--|
| F0. 07 Settin<br>Optio |         | 0      | Mater frequency source X                                             |                 |   |  |  |
|                        | 1       | 1      | Auxiliary frequency source Y                                         |                 |   |  |  |
|                        | Options | 2      | Mater frequency source X plus auxiliary frequency source Y           |                 |   |  |  |
|                        | 3       | 3      | Max. value of (mater frequency source X, auxiliary freq<br>source Y) |                 |   |  |  |

0: Present frequency reference is master frequency source X

1: Present frequency reference is auxiliary frequency source Y

2: Present frequency reference is master frequency source X plus auxiliary frequency source Y

3: Select the bigger one of the value of master frequency source X and auxiliary frequency source Y as the frequency reference

|        | Keypad setting frequency |                                                                                  | Factory Setting             | 50.00 Hz |  |
|--------|--------------------------|----------------------------------------------------------------------------------|-----------------------------|----------|--|
| F0. 08 | Setting Options          | $0.00 {\rm Hz}{\sim}~{\rm F0.10}$ (the setting value is valid when the master or |                             |          |  |
|        |                          | auxiliary fi                                                                     | equency source is digital s | etting)  |  |

When the master frequency source is selected as "digital setting UP/DN key", the value of this functional code is the original value of the frequency settings of the VFD.

|                     | Running dire    |   | ection                     | Factory Setting | 0  |
|---------------------|-----------------|---|----------------------------|-----------------|----|
| F0.09 Setting Optic |                 | 0 | Forward                    |                 |    |
|                     | Setting Options | 1 | Reverse                    |                 |    |
|                     |                 | 2 | Reverse running prohibited |                 | ed |

The turning direction of the motor can be changed through setting options of this functional code. It is equivalent to adjusting any two lines (U, V, W) of the motor for changing the turning direction.

Note: The turning direction of electric motor will return to its original state after initialization of parameters. Please use this very cautiously under the occasion that the system has finished debugging procedures and any change of the turning direction of electric motor is prohibited.

| F0 10 | Max. output frequency | Factory Setting | 50.00Hz |
|-------|-----------------------|-----------------|---------|
| 10.10 | Setting Options       | 10.00~600       | .00Hz   |

| F0.11 | Upper limit frequency source selection |                                                                                               |                                                                   | Factory Setting        | 0           |
|-------|----------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------|-------------|
|       |                                        | 0                                                                                             | Keypad setting (F0.12)                                            |                        |             |
|       | Options 2<br>3                         | 1                                                                                             | AVI terminal (100% corresponds to the setting frequency of F0.12) |                        |             |
|       |                                        | 2                                                                                             | ACI terminal (100% corresponds to the set<br>frequency of F0.12)  |                        | the setting |
|       |                                        | Multi-step speed terminals (Multi-step speed frequen<br>setting is the upper limit frequency) |                                                                   | eed frequency<br>ncy)  |             |
|       |                                        | 4                                                                                             | Con                                                               | nmunications interface |             |

Define the source of the upper limit frequency. The upper limit frequency can come from keypad settings (F0.12), or from analog inputs. When using an analog input to set the upper limit frequency, the value of 100% of the analog input is corresponding to F0.12.

| E0.12 | Upper limit frequency        | Factory Setting 50.00Hz |      |
|-------|------------------------------|-------------------------|------|
| F0.12 | Setting Options F0.14~ F0.10 |                         | 0.10 |
| F0.13 |                              | Reserved                |      |

| E0.14 | Lower limit frequency |     | Factory Setting                          | 0.00Hz     |
|-------|-----------------------|-----|------------------------------------------|------------|
| F0.14 | Setting Options       | 0.0 | $00 { m Hz} \sim { m Upper limit}$ frequ | ency F0.12 |

When the VFD starts running, it will starts from the start frequency. In the running process, if the command frequency is lower than the lower limit frequency, the VFD will run at the lower limit frequency, stop or run at zero speed, and the running mode at this situation can be set by F0.15.

|         | The function | of lower limit frequency |                                  | Factory Setting | 0      |
|---------|--------------|--------------------------|----------------------------------|-----------------|--------|
| F0 15   | F0.15 ~ .    |                          | Running at lower limit frequency |                 | quency |
| 10.15   | Options      | 1                        | Stop                             |                 |        |
| options |              | 2                        | Sleep                            |                 |        |

Selecting the running mode of the VFD when the set frequency is lower than the lower limit frequency. In order to avoid the long term low speed operation of the electric motor, this functional parameter can be used to select the stop mode.

| F0.16 | Carrier frequency setting | Factory Setting | According to model |
|-------|---------------------------|-----------------|--------------------|
|       | Setting Options           | 1.0~15          | .0kHz              |

This function can adjust the carrier frequency of the VFD. By adjusting carrier frequency, the motor noises can be improved, the resonance point of mechanical system can be avoided and the influences of earth leakage and interference from VFD can be reduced.

When the value of carrier frequency is set higher, the motor loss will drop, the temperature rise of motor will decrease, but the loss of VFD will rise, the temperature rise of the VFD will increase and the interference to VFD will also increase.

Following is Influences to the corresponding performances while adjusting the carrier frequency:

| Carrier frequency               | $Low \rightarrow High$                       |  |
|---------------------------------|----------------------------------------------|--|
| Motor noises                    | $Loud \rightarrow Low$                       |  |
| Output current waveform         | $\operatorname{Bad} \to \operatorname{Good}$ |  |
| Temperature rise of motor       | $\mathrm{High} \to \mathrm{Low}$             |  |
| Temperature rise of VFD         | $Low \rightarrow High$                       |  |
| Leakage current                 | $Small \rightarrow Large$                    |  |
| Exterior radiation interference | $Small \rightarrow Large$                    |  |

|                          | PWM mod            |         | Factory Setting | 0   |
|--------------------------|--------------------|---------|-----------------|-----|
| F0.17 Setting<br>Options |                    | 0       | PWM mod         | e 1 |
|                          | Setting<br>Options | 1       | PWM mode 2      |     |
|                          | 2                  | PWM mod | e 3             |     |

0: PWM mode 1, this mode is a normal PWM mode, when the frequency is low, the motor noise is low, on the contrary the noise is loud.

1: PWM mode 2, the motor noise is low when the motor runs in this mode, but the motor temperature rise is high. The rated power of the VFD should be degraded if this function is chosen.

2: PWM mode 3, the motor noise is loud when the motor runs in this mode, but this mode has a very good inhibiting effect for elec-mech oscillation.

| F0 18 | Acceleration time 1 | Factory Setting | According to model |  |
|-------|---------------------|-----------------|--------------------|--|
| 10.18 | Setting scope       | 0.1~3600.0s     |                    |  |
| F0 10 | Deceleration time 1 | Factory Setting | According to model |  |
| F0.19 | Setting scope       | 0.1~3600.0s     |                    |  |

Acceleration time 1 means the needed time T1 that the VFD accelerate from 0Hz to the Max. output frequency(F0.10).

Deceleration time 1 means the needed time T2 that the VFD decelerate from the Max. output frequency(F0.10)to 0Hz.

See the diagram below:



Figure xx Sketch Map of Acceleration and Deceleration Time

Note: The difference between the actual acceleration/deceleration time and the set acceleration/ deceleration time.

Totally 4 groups of acceleration and deceleration time are optional.

Group 1:F0.18, F0.19;

Group 2:F8.03, F8.04

Group 3:F8.05, F8.06

Group 4 F8.07, F8.08.

The acceleration and deceleration time can be selected through the multi-function digital input terminals (F5.00 $\sim$ F5.05).

|                          | Default Setti |   | Factory Setting            | 0 |
|--------------------------|---------------|---|----------------------------|---|
| F0.20 Setting<br>Options | ~ .           | 0 | No operation               |   |
|                          | Options       | 1 | Restore to factory setting |   |
|                          | 1             | 2 | Fault record clearing      |   |

#### O: No operation

1: The VFD restore all the parameters(except parameters from group F2) to factory settings.

2: The VFD clear all the recent default records.

| F0.21 | Parameter lo    | ck and unlock |  | Factory Setting  | 0 |
|-------|-----------------|---------------|--|------------------|---|
|       | Setting Options | 0             |  | Unlock parameter |   |
|       | Setting Options | 1             |  | Lock parameter   |   |

0:Unlock parameter

1: Lock parameter. After being locked, all the parameters can not be changed except F0.21.

| F0.22 | Acceleration/ deceleration method |   | Factory Setting | 0              |  |
|-------|-----------------------------------|---|-----------------|----------------|--|
|       | Setting Options                   | 0 |                 | Linear method  |  |
|       | Setting Options                   | 1 |                 | S curve method |  |

Selection of the change mode of frequency during start and operation process.

0: Linear method of speed acceleration. The output frequency ascends or descends linearly.

1:S curve method: The output frequency ascends or descends in S curve shape.

| F0 23 | S Curve Starting Stage Ratio  |    | Factory Setting | 30.0% |
|-------|-------------------------------|----|-----------------|-------|
| 10.25 | Setting Options               |    | 0.1%~50.0%      |       |
| F0 24 | S Curve Finishing Stage Ratio |    | Factory Setting | 30.0% |
| 10.24 | Setting Options               | 0. | 1%~50.0%        |       |

Parameters F0.23 and F0.24 define the S curve method's starting and finishing

time ratio separately, and they must fulfill the requirement as:  $F0.23+F0.24 \le 100.0\%$ .

In the following chart, t1 refers to F0.23, t2 refers to F0.24. The acceleration/deceleration ratio during the time between t1 and t2 is fixed.



S Curve Acceleration/Deceleration Method

| F0.25 | Cooling fan<br>(only for 4kW | ling fan running method<br>or 4kW and above inverter) |  | Factory Setting         | 1  |
|-------|------------------------------|-------------------------------------------------------|--|-------------------------|----|
|       | Setting Options              | 0                                                     |  | Keep running when power | on |
|       | Setting Options              | 1                                                     |  | Automatic running       |    |

0: Keep running when power on. When the VFD is powered on, the cooling fan keeps running.

1: Automatic running. When the VFD is in operation, the cooling fan is also in operation; when the VFD stops, the cooling fan will stop after 30s' time delay.

Note: The cooling fans of the 2.2Kw (and below) VFD are uncontrollable, only the fans of 4Kw (and above) VFD can be controlled by F0.25.

|       | Start mode      |   | Factory Setting         | 0                               |       |  |
|-------|-----------------|---|-------------------------|---------------------------------|-------|--|
| E1.00 |                 | 0 |                         | Start directly                  |       |  |
| F1.00 | Setting Options | 1 |                         | DC braking first and then start |       |  |
|       |                 | 2 | Speed tracing and start |                                 | start |  |

# 5.2 F1 Group: Start and Stop Parameters

0: Start directly: start from the frequency of start.

1: DC braking first and then start: DC braking first according to the set mode of F1.03 and F1.04, then start from the frequency of start. This is suitable for the occasion that the small inertial load may cause inversion at start up.

#### 2: Speed tracing and start

The VFD will judge the rotational speed and direction of the electric motor, and then start at relevant frequency traced from the rotational speed of the electric motor, thus the rotating electric motor can start smoothly without surge. This is suitable for the occasion that the large inertial load power off suddenly and start up again.

In order to ensure the performance of speed tracing and start, accurate parameters for electric motor should be set. (See F2 group)

| F1 01         | Start frequency              | Factory Settin  | g 1.50Hz |
|---------------|------------------------------|-----------------|----------|
| Setting Scope |                              | 0.00~10.00Hz    |          |
| E1 02         | Hold time of start frequency | Factory Setting | 0.0s     |
| 11.02         | Setting Scope                | 0.0~50.0s       |          |

The VFD operates from the start frequency (F1.01), after the hold time of start frequency (F1.02), the VFD will accelerate to the target frequency according to the set time of acceleration. If the target frequency is lower than the start frequency, the VFD will be in standby mode. The start frequency will not be restricted by the

lower limit frequency.

In order to ensure the torque of the VFD when starting, please set appropriate start frequency. And to build up the magnetic flow when the electric motor is start, please keep the start frequency for some time and then speed up.

If the frequency reference (frequency source) is lower than start frequency, the VFD cannot start, and keep in standby mode.

When switching between forward and reverse direction of motor rotation, the hold time of start frequency will not take effect. The hold time is not included in the speed up time, but in the running time of simple PLC function.

| E1 02 | DC braking current before sta |           | tart Factory Setting |  | 0.0% |
|-------|-------------------------------|-----------|----------------------|--|------|
| 11.05 | Setting Scope                 |           | 0.00~150.0%          |  | )    |
| F1 04 | DC braking time before start  | Factor    | y Setting            |  | 0.0s |
| 11.04 | Setting Scope                 | 0.0~50.0s |                      |  |      |

DC barking before start is usually used to make the electric motor totally stop before starting.

If the starting mode is DC barking before starting, the VFD will brake in DC current according to the pre-set DC braking current, and the VFD will begin to run after the pre-set time of DC braking current. If the pre-set time of DC braking current is 0, the VFD will start directly without DC braking.

The larger DC braking current, the stronger braking force.

DC braking current before start is a percentage with respect to the rated current of the VFD.

|                       | Stop mode | Factory Set          | ting          | 1 |
|-----------------------|-----------|----------------------|---------------|---|
| F1.05 Setting Options | 0         | Deceleration to stop |               |   |
|                       | 1         | (                    | Coast to stop |   |

0: Deceleration to stop

After the stop command having taken effect, the VFD will reduce output frequency in accordance with deceleration mode and the defined acceleration and deceleration time, and the VFD will stop if the frequency reduced to 0.

1: Coast to stop

After the stop command having taken effect, the VFD immediately ceases to output. The VFD will coast to stop according to mechanical inertia.

| E1.06         | Trigging frequency of DC braking at stop | Factory Setting | 0.00Hz |
|---------------|------------------------------------------|-----------------|--------|
| 11.00         | Setting Scope                            | 0.00Hz~F0.10    |        |
| E1 07         | Waiting time before DC braking at stop   | Factory Setting | 0.0s   |
| Setting Scope |                                          | 0.0~50.0s       |        |
| E1 09         | DC braking current at stop               | Factory Setting | 0%     |
| 11.00         | Setting Range                            | 0.0~150.        | 0%     |
| E1.00         | DC braking time at stop                  | Factory Setting | 0.0s   |
| F1.09         | Setting Range                            | 0.0~50.         | 0s     |

Trigging frequency of DC braking at stop: in the process of deceleration and slowing down, as soon as the VFD reaches this frequency, it will stop and go into the process of DC braking.

Waiting time before DC braking at stop: before DC braking, the VFD ceases to output, after this delay it begins DC braking. This function is used to avoid transient fault caused by DC braking when the speed is too high.

DC braking current at stop: means the added current of DC braking. The bigger current, the stronger effect of DC braking. The braking current of the power of halt is the percentage of rated current of the VFD.

DC braking time at stop: the added time for DC braking. If this value is 0, means there is no DC braking process, the VFD will stop according to the set deceleration and halt process.

| E1 10 | Dead-zone time between FWD and REV | Factory Setting | 0.0s |
|-------|------------------------------------|-----------------|------|
| F1.10 | Setting Range                      | 0.0~3600s       |      |

The transient time at zero output frequency in the process of setting the FWD and REV transient process

As below:



Schematic Diagram of the Dead Time between FWD and REV

|       | Terminals control option when power on | Factory Setting | 0        |
|-------|----------------------------------------|-----------------|----------|
| F1.11 | Setting Options                        | 0               | Disabled |
|       | Setting Options                        | 1               | Enabled  |

| F1.12-F1.17 | Reserved |
|-------------|----------|
|             |          |

| F1.18 | Wake-up delay time (effective in sleep and standby mode) | Factory Setting | 0.0s |
|-------|----------------------------------------------------------|-----------------|------|
|       | Setting Range                                            | 0.0~3600s       |      |

When F0.15=2, only if the time that the set frequency is equal or greater than the lower limit frequency exceeds the set vale of F1.18 can the VFD begin to operate.

| F1.19 | Restart option after power-off | Factory Setting | 0 |
|-------|--------------------------------|-----------------|---|
|       | Setting Options                | 0~1             |   |

0: Restart is prohibited. This means that after powered off and powered on again, the VFD will not start automatically.

1: Restart is allowed. This means that after powered off and powered on again, the VFD will restore to the previous running status automatically. That is, if the VFD is in running status before power-off, it will delay the waiting time(F1.20) of restart after power-on next time and then start operation automatically (when controlled by terminals, the running terminals must be in closed status), if the VFD is stopped before power-off, it will not start automatically after powered on again.

| F1.20 | Waiting time of restart after<br>power-off | Factory Setting | 0.0s |
|-------|--------------------------------------------|-----------------|------|
|       | Setting Range                              | 0.0~3600s       |      |

Note: when F1.19 is 1, this setting is effective.

| F1.21 | Over modulation option | Factory Setting | 0.0s |
|-------|------------------------|-----------------|------|
|       | Setting Range          | 0.0~3600s       |      |

0:Over modulation function invalid

1:Over modulation function valid

This function is suitable for the working conditions that the VFD increases the output voltage by increasing the utilization rate of its own bus bar voltage in long term low voltage of power grid and long term overload.

# 5.3 F2 Group: Motor Parameters

| Drive model |                 | Factory Setting |                | 0         |
|-------------|-----------------|-----------------|----------------|-----------|
| F2.00       | Setting Options | 0               | General r      | nodel (G) |
|             |                 | 1               | Pump model (P) |           |

Note: Users can set the parameters of this group to change model type and take advantage of the combination of G/P. The 220V inverter only has General model (G).

0: Suitable for the constant torque load with the appointed parameters

1: Suitable for the variable torque load (load of draught fans, water pumps)of the appointed parameters

| E2 01 | Motor rated power             | Factory Setting                                 | 0                         |  |
|-------|-------------------------------|-------------------------------------------------|---------------------------|--|
| F2.01 | Setting Range                 | 0.4                                             | ~700.0kW                  |  |
| E2 02 | Motor rated frequency         | Factory Setting                                 | 50.00Hz                   |  |
| F2.02 | Setting Range                 | 10.0                                            | 00Hz~F0.10                |  |
| F2.03 | Motor rated rotation<br>speed | Factory Setting Defined by inverter             |                           |  |
|       | Setting Range                 | 0~36000rpm                                      |                           |  |
| E2 04 | Motor rated voltage           | Factory Setting                                 | Defined by inverter model |  |
| 12.04 | Setting Options               | 0~480V                                          |                           |  |
| F2.05 | Motor rated current           | Factory Setting Different according to in model |                           |  |
|       | Setting Range                 | 0.8~2000A                                       |                           |  |



Please set the parameters according to the nameplate of the electric motor.

To make sure the superior control performance of vector control, please set accurate parameters, accurate parameter identification comes from the right settings of rated parameters of the electric motor.

In order to ensure control performance, please configure the electric motor according to the standards of electric motor adaption of the VFD. If the gap between motor power and the standard adaptation motor is too large, the control performance of the VFD will decline sharply.

| E2.06         | Motor stator resistance            | Factory Setting                        | Defined by inverter model |  |
|---------------|------------------------------------|----------------------------------------|---------------------------|--|
| F2.00         | Setting Range                      | 0.001~65.53Ω                           |                           |  |
| E2.07         | Motor rotator resistance           | Factory Setting                        | Defined by inverter model |  |
| F2.07         | Setting Range                      | 0.001~65.53Ω                           |                           |  |
| F2 08         | Motor stator inductance            | Factory Setting                        | Defined by inverter model |  |
| 12.00         | Setting Options                    | 0.1~6553mH                             |                           |  |
| F2.09         | Motor rotator mutual<br>inductance | Factory Setting                        | Defined by inverter model |  |
|               | Setting Range                      | 0.1~6553mH                             |                           |  |
| F2 10         | Motor no-load current              | Factory Setting Defined by inverter mo |                           |  |
| Setting Range |                                    | .1~655.3A                              |                           |  |

After automatic tuning of electric motor finished normally, the setting values of  $F2.06 \sim F2.10$  will update automatically.

Every time after changing the rated power of F2.01, the VFD will restore the standard default parameters of F2.06 $\sim$ F2.10.(Quadrupole Y series asynchronous motor)

If the spot situation do not allow tuning for electric motor, it is possible to refer to the known parameters of the electric motors of same type and input the parameters manually.

|       | Motor parameters auto-tuning | Factory Setting |                                | 0 |
|-------|------------------------------|-----------------|--------------------------------|---|
| F2.11 | Setting Options              | 0               | No autotuning                  |   |
|       |                              | 1               | Autotuning completely(no load) |   |
|       |                              | 2               | Static autotuning(with load)   |   |

Hint: Before tuning, make sure that the parameter of the rated power of the electric motor (F2.01 $\sim$ F2.05) is set correctly.

0: No autotuning, that is tuning is prohibited.

1:Autotuning completely(no load)

To ensure the dynamic control performance of the VFD, please select autotuning completely(no load), at this time, the electric motor must be in the status of no load.

After selecting rotary tuning, the VFD will conduct static autotuning(with load) first, after completion, the electric motor will accelerate to the speed of 80% of the rated frequency according to the acceleration time set in F0.18 and hold it for some time. Then the motor will decelerate to zero-speed as per the deceleration time set in F0.19, and the rotary tuning ends.

Action specification: set this function code as 1 and confirm this by pressing the button RUN, the VFD will begin to conduct rotary tuning.

2:Static autotuning(with load) is suitable for the occasions that the electric motor is not easy to break away from load and is not able to conduct rotary tuning.

Action specification: set this function code as 2 and confirm this by pressing the button RUN, the VFD will begin to conduct rotary tuning.

Tuning operation specification:

Set F2.11 as 1 or 2 and press ENT, now "RUN" is displayed and blinks, then press the button RUN to conduct parameter tuning, now the "RUN"stops blinking. Tuning finished, the stop state will displayed. In the process of tuning, press "STOP/RESET" can suspend tuning. After the completion of tuning, the value of F2.11 will restore to 0 automatically.

| F2.12 | Acceleration excitation coefficients | Factory Setting | 100% |
|-------|--------------------------------------|-----------------|------|
|       | Setting Options                      | 40%~12          | 0%   |

Under vectorial mode, by reducing this coefficients, the acceleration time can be shortened, this is suitable for occasions of light load fast acceleration.

### 5.4 F3 Group: Vector Control Parameters

| F3.00 | Proportional gain 1 of speed loop | Factory Setting | 20      |
|-------|-----------------------------------|-----------------|---------|
|       | Setting Options                   | 0~100           |         |
| F3 01 | Integral time 1 of speed loop     | Factory Setting | 0.50s   |
| 13.01 | Setting Options                   | 0.01~           | -10.00s |
| F3 02 | Low frequency point of switch     | Factory Setting | 5.00Hz  |
| F3.02 | Setting Options                   | 0.00Hz~F3.05    |         |
| F3 03 | Proportional gain 2 of speed loop | Factory Setting | 25      |
| 15.05 | Setting Options                   | 0~100           |         |
| F2 04 | Integral time 2 of speed loop     | Factory Setting | 1.00s   |
| F3.04 | Setting Options                   | 0.01~10.00s     |         |
| F3.05 | High frequency point of switch    | Factory Setting | 10.00Hz |
|       | Setting Options                   | F3.02           | ~F0.10  |

When the VFD is running at different frequency, different speed loop PI parameters can be selected. If the running frequency is lower than the value of low frequency point of switch (F3.02), the speed loop PI adjustable parameters should be F3.00 and F3.01.If the running frequency is higher than the value of high frequency point of switch (F3.05), the speed loop PI adjustable parameters should be F3.03 and F3.04. When the operation frequency is between the low frequency point of switch and high frequency point of switch, the PI parameters are linear switching of the two group PI parameters.



By adjusting the proportion coefficient and integral time of speed regulator, the dynamic response speed of vector control can be adjusted. Increase proportional gain and reduce integral time can both speed up the dynamic response of speed loop. The conditions of too large proportional or too short integral time will cause system oscillation.

Recommended adjustment method: If the factory parameters cannot meet the requirements, conduct trimming on the basis of factory parameters, firstly increase the proportional gain and ensure that the system will not oscillate, then reduce integral time so that the system owns fast response and small overshoot.

Note: Inappropriate setting of PI parameters will lead to large speed overshoot, even cause over-voltage fault when overshoot falls back.

As for no speed sensor vector control, this parameter is used for adjusting rotating speed of electric motor. When the work load of electric motor is heavy and the speed

| F3.06 | Coefficient of slip compensation at VC control mode | Factory Setting | 100%  |
|-------|-----------------------------------------------------|-----------------|-------|
|       | Setting Options                                     | 50%~            | ~200% |

is too slow, increase this parameter, contrarily decrease this parameter.

As for speed sensor vector control, this parameter can adjust the out put current of the VFD in same workload.

| F3.07 | Upper limit torque | Factory Setting                          | 150% |
|-------|--------------------|------------------------------------------|------|
|       | Setting Options    | $0.0 \sim 200.0\%$ (Drive rated current) |      |

Under speed control mode, the VFD output the maximum value of torque, set 100.0% which is correspondent to the rated output(or rated torque) current of the VFD.

| F3.08-F3.09 | Reserved |
|-------------|----------|
|             |          |

| F3 10 | Pre-alarm option when overload | Factory Setting | 1 |
|-------|--------------------------------|-----------------|---|
| 15.10 | Setting Options                | $0 \sim 4$      |   |

0: no detection

1: Overload pre-alarm is detected effective in operation (including acceleration, deceleration and constant speed), go on operation after detection

2: Overload pre-alarm is detected effective in operation (including acceleration, give alarm (E023) and stop after detection

3: Overload pre-alarm is detected effective in constant speed, go on operation after detection

4: Overload pre-alarm is detected effective in constant speed, go on operation after detection, give alarm (E023) and stop after detection

| F3.11 | Detecting level of pre-alarm when overload | Factory Setting                                 | 150.00% |
|-------|--------------------------------------------|-------------------------------------------------|---------|
|       | Setting Options                            | 1.0~200.0% (referred to inverter rated current) |         |
| F3.12 | Detecting time of pre-alarm when overload  | Factory Setting                                 | ls      |
|       | Setting Options                            | 0~600s                                          |         |

# 5.5 F4 Group: V/F Control Parameters

This group of codes are only effective for V/F control(F0.00=1), but are invalid for vector control.

V/F control is fit for fans, pumps and other general loads, or the situation of one VFD drives several electric motors, or the situation that the frequency of the VFD has too much difference with that of the electric motor.

|       | V/F curve selection | Factory Setting |                                   | 0          |
|-------|---------------------|-----------------|-----------------------------------|------------|
| F4.00 |                     | 0               | Linear curve                      |            |
|       | Setting Options     | 1               | User-defined curve                |            |
|       |                     | 2               | 1.3 square torque-step-down curve |            |
|       |                     | 3               | 1.7 square torque-step-down curve |            |
|       |                     | 4               | 2 square torque-step-             | down curve |

0:Linear curve, suitable for situations of ordinary constant torque load.

1:User-defined curve,suitable for special loads such as water extractor, hydro-extractor etc.Now by setting the parameters of F F4.03  $\sim$  F4.08, you can get any curve about V/F relations.

2:1.3 square torque-step-down.

3:1.7 square torque-step-down.

4: 2 square torque-step-down curve.

| F4 01 | Torque boost                   | Factory Setting                               | 3.0%  |
|-------|--------------------------------|-----------------------------------------------|-------|
| 14.01 | Setting Options                | 0.0 %(auto) 0.1% ~30.0%                       |       |
| F4.02 | Torque boost cut-off frequency | Factory Setting                               | 20.0% |
|       | Setting Options                | 0.0~50.0% (relative to motor rated frequency) |       |

In order to make up for the feature of low-frequency torque of V/F control, do a lift makeup for the output voltage of the VFD when it is in low frequency.

If the settings for torque boost is too high, the electric motor will become too hot and the VFD will be in over-current. Generally, when setting the torque boost, do not exceed 8.0%.

Adjust this parameter effectively can avoid over-current when start up. As for large load, it is recommended to increase this parameter, and reduce this when the load is light.

When torque is increased to 0.0, the VFD will in the status of automatic torque boost, the VFD will automatically calculate the needed torque boost value according to the parameters of stator resistance etc.

Torque boost and torque cutoff frequency:under this frequency, the torque of torque boost is effective, but if exceed this set frequency, the torque boost will be invalid.



Diagram of Manual Torque Boost

- V1:voltage of manual torque boost
- F1:cutoff frequency of torque boost
- vb: max.output voltage
- Fb: The rated operating frequency

| F4.03 | V/F frequency 1 | Factory Setting | 5.00Hz |
|-------|-----------------|-----------------|--------|
|       | Setting Options | 0.00Hz~F4.      | 05     |

| E4.04  | V/F voltage 1   | Factory Setting             | 12.0%   |
|--------|-----------------|-----------------------------|---------|
| Г4.04  | Setting Options | 0.0%~100.0%                 |         |
| F4 05  | V/F frequency 2 | Factory Setting             | 10.00Hz |
| 14.05  | Setting Options | F4.03~F4.07                 |         |
| E4.0C  | V/F voltage 2   | Factory Setting             | 26.0%   |
| F4.00  | Setting Options | 0.0%~100.0%                 |         |
| E4.07  | V/F frequency 3 | Factory Setting             | 20.00Hz |
| 14.07  | Setting Options | F4.05~motor rated frequency |         |
| E4.09  | V/F voltage 3   | Factory Setting             | 45.0%   |
| 1'4.00 | Setting Options | 0.0%~100.0%                 |         |

The 6 parameters of F4.03 $\sim$ F4.08 define multistage V/F curve.

The setting values of V/F curves are determined by the load characteristics of the electric motor.

Note: the relationships of the three voltage and frequency must meet: V1 < V2 < V3, F1 < F2 < F3. When the frequency is low, high voltage setting may cause over-heating of motor or even burn the motor, and the VFD may lose speed because of over-current or get into over-current protection.

V1  $\sim$  V3: Voltage percentage of 1 $\sim$ 3 multistage V/F curve

F1  $\sim$  F3: frequency point of 1 $\sim$ 3 multistage V/F curve

Fb: rated motor frequency F2.02

| F4.09 | Coefficient of V/F Slip compensation | Factory Setting | 0.00% |
|-------|--------------------------------------|-----------------|-------|
|       | Setting Options                      | 0.0%~200        | ).0%  |

This is effective for V/F control. Setting this parameter can make up the speed deviation because of load in V/F control, and make sure that the speed of electric motor can remain stable when the load changes. When V/F speed deviation compensation coefficient is set as 100%, this means if the electric motor is in rated

load, the compensated speed deviation will be the rated slip of the electric motor. As for the rated speed deviation of the electric motor, the VFD will get the value by automatic calculation of the rated frequency of electric motor and rated speed of F2 group. Refer to the following principles to adjust the speed deviation coefficient:when the load is the rated load, and set the speed deviation coefficient as 100%, the rotational speed of the electric motor driven by VFD will basically close to the given speed.

|       | Energy-saving selection | Factory Setting |             | 0          |
|-------|-------------------------|-----------------|-------------|------------|
| F4.10 | Satting Options         | 0               | Disab       | oled       |
|       | Setting Options         | 1               | Enabled aut | omatically |

When the electric motor is no-load or is operating in light load, by testing the load current and adjusting output voltage properly to realize the purpose of automatic energy saving.

Note: this function is specially effective for loads like fans, pumps, etc.

| F4.11 | Reserved |
|-------|----------|
|       |          |

| F4.12 | Low-frequency threshold of restraining oscillation | Factory Setting | 1 |
|-------|----------------------------------------------------|-----------------|---|
|       | Setting Options                                    | 0~10            |   |

| F4.13 | High-frequency threshold of restraining oscillation | Factory Setting | 0 |
|-------|-----------------------------------------------------|-----------------|---|
|       | Setting Options                                     | 0~10            |   |

Most electric motors are easy to have current oscillations when operate in some certain frequencies, some of the motors may not operate stably,or even cause over-current to the VFD. F4.16 can restrain oscillation, when set F4.12 and F4.13 into small values, the outcome of restraint will be prominent, and the current will

increase obviously, however, when set these values too high, the outcome of restraint will be weak.

| F4.14 |                                               | Reserved |                     |         |
|-------|-----------------------------------------------|----------|---------------------|---------|
|       | Boundary frequency of restraining oscillation |          | Factory Setting     | 30.00Hz |
| F4.15 | Setting Options                               |          | 0.00Hz~F0.10 (Maxi. |         |
|       |                                               |          | Frequency)          |         |

F4.15 is the demarcation point of frequency of F4.12 and F4.13.

| F4.16 | Reserved |
|-------|----------|
|       |          |

|       | AVR function selection | Factory Setting |                                  | 1 |
|-------|------------------------|-----------------|----------------------------------|---|
| F4.17 | Setting Options        | 0               | Invalid                          |   |
|       |                        | 1               | Valid all the time               |   |
|       |                        | 2               | Only invalid during deceleration |   |

Under V/F control, when it is needed to stop quickly and there is no brake resistance, select "only invalid under slowdown" can greatly reduce the possibility of over voltage fault and alarm. While in the condition that brake resistance exists and there is no need to slow down quickly, please select "Valid all the time".

# 5.6 F5 Group Input Terminals Parameters

The standard unit of a 8000B series VFD has 6 multi-function digit input terminals and 2 analog input terminals and 1 virtual multi-function digital input terminal.

| F5.00 | M1 terminal function | Factory Setting | 1 |
|-------|----------------------|-----------------|---|
| F5.01 | M2 terminal function | Factory Setting | 2 |
| F5.02 | M3 terminal function | Factory Setting | 7 |
| F5.03 | M4 terminal function | Factory Setting | 0 |
| F5.04 | M5 terminal function | Factory Setting | 0 |
| F5.05 | M6 terminal function | Factory Setting | 0 |
| F5.06 | Reserved             | Factory Setting | 0 |
| F5.07 | Reserved             | Factory Setting | 0 |
| F5.08 | Reserved             | Factory Setting | 0 |
| F5.09 | Reserved             | Factory Setting | 0 |

VDI fixedly takes the output of VDO as input (that means when VDO is valid, the corresponding functions of VDI settings are valid).

These parameters are used to set the corresponding functions of digit multi-function input terminals or virtual multi-function digital input, the optional functions are as follows:

| Setting<br>Values | Functions         | Descriptions                                                                                                                                                     |
|-------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                 | No function       | Even has signal input, the VFD will not act. The<br>unused terminals can be set as no function in case<br>of preventing malfunction.                             |
| 1                 | Run forward (FWD) | Control terminals for running forward and                                                                                                                        |
| 2                 | Run reverse (REV) | reverse.                                                                                                                                                         |
| 3                 | 3-wire control    | The terminal determines the operation mode of AC drive as 3-wire control. For details, please refer to the description of function code of F5.11 3-wire control. |

| 4  | Jog forward (FJOG)                                        | FJOG is jog forward operation, RJOG is jog                                                                                                                                                                                                                                        |
|----|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | Jog reverse (RJOG)                                        | reverse operation. As for the frequency and the acceleration and deceleration time of jog operation, refer to the detailed description of function code of F8.00, F8.01 and F8.02.                                                                                                |
| 6  | Coast to stop                                             | The VFD blocks output, the shutdown process of<br>electric motor is not controlled by the VFD. As for<br>large inertia loads and no requirements for the<br>time of shutdown, this is the usual method. The<br>definition of this method is the same as that<br>defined in F1.05. |
| 7  | Fault reset (RESET)                                       | External fault reset function. This function is the same as that of RESET on keyboard. Remote fault reset is implemented by this function.                                                                                                                                        |
| 8  | Pause running                                             | The VFD slows down, but all the operating<br>parameters are in memory state, such as PLC, the<br>swing frequency, and PID parameters. As soon as<br>this signal disappears, the VFD returns to the<br>status before shutdown.                                                     |
| 9  | External fault input N. O.                                | Set the terminal as this function, as this terminal closed, the VFD will report E015 fault and stop.                                                                                                                                                                              |
| 10 | Frequency setting<br>increasing(UP)                       | If the frequency is determined by external terminals, the terminals with the two functions are                                                                                                                                                                                    |
| 11 | Frequency setting decreasing(DOWN)                        | used as increment and decrement commands for<br>frequency modification.<br>When the frequency source is digital setting, they<br>are used to adjust the frequency.                                                                                                                |
| 12 | Clear UP/DOWN setting                                     | Clear the frequency values set through UP/DOWN.                                                                                                                                                                                                                                   |
| 13 | Frequency setting source switch between X and Y           | If the present frequency source is X, switch to frequency source Y.                                                                                                                                                                                                               |
| 14 | Frequency setting source<br>switch between X and<br>(X+Y) | If the present frequency source is X, switch to frequency source X+Y.                                                                                                                                                                                                             |
| 15 | Frequency setting source                                  | If the present frequency source is Y, switch to                                                                                                                                                                                                                                   |

|    | switch between Y and (X+Y)                                           | frequency source X+Y.                                                                                                |
|----|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 16 | Multi-step speed terminal 1                                          |                                                                                                                      |
| 17 | Multi-step speed terminal 2                                          | The setting of 16 speeds can be implemented                                                                          |
| 18 | Multi-step speed terminal 3                                          | details, please refer to annex 1.                                                                                    |
| 19 | Multi-step speed terminal 4                                          |                                                                                                                      |
| 20 | Multi-step speed pause                                               | Shield the terminal function of multi-step speed selection, and maintain the setting value to current status.        |
| 21 | Acceleration/deceleration<br>time selection terminal 1               | Select 4 settings of acceleration and deceleration                                                                   |
| 22 | Acceleration/deceleration<br>time selection terminal 2               | two terminals.                                                                                                       |
| 23 | Restart simple PLC after<br>pause                                    | Restart the process of simple PLC and clear up the memory information of the previous PLC                            |
| 24 | Simple PLC pause                                                     | Executing process of simple PLC pauses, operate all the time at the current speed                                    |
| 25 | PID pause                                                            | PID is invalid temporarily, the VFD maintains the present output of frequency, will not adjust by PID.               |
| 26 | Swing frequency pause<br>(maintain at current<br>frequency)          | The VFD maintains temporarily at the present output of frequency                                                     |
| 27 | Reset after swing frequency<br>pause (reset to central<br>frequency) | The frequency of the VFD resets to central frequency                                                                 |
| 28 | Counter reset                                                        | This will clear up the status of counter                                                                             |
| 29 | Reserved                                                             |                                                                                                                      |
| 30 | Acceleration/deceleration prohibited                                 | Keep the VFD not influenced by outer<br>signals(except the stop command), maintains the<br>present output frequency. |
| 31 | Counter triggering                                                   |                                                                                                                      |
| 32 | Clear UP/DOWN setting                                                | When the terminal is closed, this can clear up the                                                                   |
|    | temporarily                                    | set frequency of UP/DOWN; when the terminal is disconnected, it will go back to the frequency of UP/DOWN setting.                                                                                                                                               |
|----|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 33 | Reserved                                       |                                                                                                                                                                                                                                                                 |
| 34 | Length counting input                          | Length counting by the input signal. If the signal<br>of counting input is a pulse signal, it is needed to<br>transfer it into a discrete signal by a relay(the<br>frequency of input signal should be lower than<br>200Hz)                                     |
| 35 | Length counting clear up                       | Clear up the present values of counting meter                                                                                                                                                                                                                   |
| 36 | Control command source<br>switching            | When the terminal is defined as this function, and<br>when terminal input is switching, it can select<br>command source between keypad command and<br>terminal command.                                                                                         |
| 37 | Terminal input delay output                    | When the terminal is defined as this function, the close time of this terminal exceeds the setting value of F8.21, and the function of the digital output such as relay is defined as 16, the digital output will be activated as closed, or it will disconnect |
| 38 | Toggling PID control<br>characteristic (F9.03) | Toggling PID control characteristic of F9.03, to take reverse control action compared with before.                                                                                                                                                              |
| 39 | Switching PID parameters                       | Switching PID parameters by a multi-function digital input terminal, with command from outside controller.                                                                                                                                                      |
| 40 | Pausing PID integration                        | When it is needed in some situation, such as<br>smoothing the control effects when deviation is<br>small, PID integration can be paused by<br>multi-function terminal.                                                                                          |
| 41 | Output DC brake                                | When the terminal is defined as this function and<br>when the terminal is activated, VFD outputs the<br>current as the setting of F1.03                                                                                                                         |

| Attached | Table | 1- | Instruction | of | Multi-step | speed |
|----------|-------|----|-------------|----|------------|-------|
|----------|-------|----|-------------|----|------------|-------|

| $K_4$ | K <sub>3</sub> | K <sub>2</sub> | <b>K</b> <sub>1</sub> | Frequency<br>setting   | Corresponding<br>parameters |
|-------|----------------|----------------|-----------------------|------------------------|-----------------------------|
| OFF   | OFF            | OFF            | OFF                   | Multi-step<br>speed 0  | FD.02                       |
| OFF   | OFF            | OFF            | ON                    | Multi-step<br>speed 1  | FD.04                       |
| OFF   | OFF            |                | OFF                   | Multi-step<br>speed 2  | FD.06                       |
| OFF   | OFF            |                |                       | Multi-step<br>speed 3  | FD.08                       |
| OFF   | ON             | OFF            | OFF                   | Multi-step<br>speed 4  | FD.10                       |
| OFF   | ON             | OFF            | ON                    | Multi-step<br>speed 5  | FD.12                       |
| OFF   | ON             |                | OFF                   | Multi-step<br>speed 6  | FD.14                       |
| OFF   | ON             |                |                       | Multi-step<br>speed 7  | FD.16                       |
| ON    | OFF            | OFF            | OFF                   | Multi-step<br>speed 8  | FD.18                       |
| ON    | OFF            | OFF            | ON                    | Multi-step<br>speed 9  | FD.20                       |
| ON    | OFF            |                | OFF                   | Multi-step<br>speed 10 | FD.22                       |
| ON    | OFF            |                |                       | Multi-step<br>speed 11 | FD.24                       |
| ON    |                | OFF            | OFF                   | Multi-step<br>speed 12 | FD.26                       |
| ON    |                | OFF            | ON                    | Multi-step<br>speed 13 | FD.28                       |
| ON    |                |                | OFF                   | Multi-step<br>speed 14 | FD.30                       |
| ON    |                |                |                       | Multi-step<br>speed 15 | FD.32                       |

| Terminal 2 | Terminal 1 | Seletion of<br>accleration/deceler<br>ation time | Corresponding parameters |
|------------|------------|--------------------------------------------------|--------------------------|
| OFF        | OFF        | Acceleration time1                               | F0.18、F0.19              |
| OFF        |            | Acceleration time2                               | F8.03、F8.04              |
| ON         | OFF        | Acceleration time3                               | F8.05、F8.06              |
| ON         |            | Acceleration time4                               | F8.07、F8.08              |

| Attached 7 | Fable 2 | Instruction | of Acceleration | /Deceleration | Time |
|------------|---------|-------------|-----------------|---------------|------|
|            |         |             |                 |               |      |

| FC 10 | On/off filter times | Factory Setting 5 |  |
|-------|---------------------|-------------------|--|
| F5.10 | Setting Options     | 1~10              |  |

Sensitivity setting of the multi-function digital input terminals. If the digital input terminals are interfered and result in malfunction in some cases, increase this parameter setting for better anti-interference, but maybe the terminal sensitivity will then decrease also.

| F5.11 | Terminal control mode | Factory Setting         |     |  |
|-------|-----------------------|-------------------------|-----|--|
|       | Setting Options       | 0:2-wire control mode 1 |     |  |
|       |                       | 1:2-wire control mode 2 |     |  |
|       |                       | 2:3-wire control mode   | : 1 |  |
|       |                       | 3:3-wire control mode   | 2   |  |

This parameter defines 4 control modes of VFD by terminal inputs.

0: 2-wire control mode 1. This mode is the most usual one. By terminal command of M1(FWD) and M2(REV), the motor will run forward or reversed as shown in the following table and wiring diagram.

| K1  | K2  | Motor Control |
|-----|-----|---------------|
| OFF | OFF | STOP          |
| ON  | OFF | FORWARD       |
| OFF | ON  | REVERSE       |
| ON  | ON  | STOP          |





1: 2-wire control mode 2. In this mode, M1(FWD) is the enable terminal and the direction is determined by M2(REV).

| K1  | K2  | Motor Control |
|-----|-----|---------------|
| OFF | OFF | STOP          |
| OFF | ON  | STOP          |
| ON  | OFF | FORWARD       |
| ON  | ON  | REVERSE       |



2-wire control mode 2

2: 3-wire control mode 1. In this mode, Mn is the enable terminal and the direction is controlled respectively by M1(FWD), M2(REV).

To start a motor, close and enable Mn terminal, then with the rising edge of pulse input of M1 or M2 terminals, the motor will run forward or reverse.

To stop VFD, it should be done by disconnecting Mn terminal input signal.



3-wire control mode 1

Note:

SB1: FWD switch

SB2: STOP switch

SB3: REV switch

Mn is one of the multi-function digital input terminals, and its corresponding terminal function should be set as 3, which means "3-wire control mode".

3: 3-wire control mode 2. In this mode, Mn is the enable terminal. The running command is controlled by M1(FWD) and the direction is controlled by M2(REV).

To start a motor, close and enable Mn terminal, the rising edge of pulse input of M1 is for running command, and M2 input is for direction control.

The STOP command is done by disconnecting Mn terminal signal.



3-wire control mode 2

Note:

SB1: RUN switch

SB2: STOP switch

SB3: FWD/REV switch

Mn is one of the multi-function digital input terminals, and its corresponding terminal function should be set as 3, which means "3-wire control mode".

| F5.12 | Frequency changing rate through UP/<br>DOWN terminal adjusting | Factory Setting | 0.50Hz/s |
|-------|----------------------------------------------------------------|-----------------|----------|
|       | Setting Options                                                | 0.01~50.00      | Hz/s     |

This parameter is used to adjust the frequency changing rate of terminal UP/DOWN; the rate unit is Hz/s.

| F5.13 | AVI lower limit                                      | Factory Setting      | 0.00V |
|-------|------------------------------------------------------|----------------------|-------|
|       | Setting Options                                      | 0.00V~10.00V         |       |
| F5.14 | Setting value<br>corresponding to AVI<br>lower limit | Factory Setting 0.0% |       |
|       | Setting Options                                      | -100.0%~100.0%       |       |

| E5 15 | AVI upper limit                                      | Factory Setting | 10.00V  |  |
|-------|------------------------------------------------------|-----------------|---------|--|
| 15.15 | Setting Options                                      | 0.00V~10.       | 00V     |  |
| F5.16 | Setting value<br>corresponding to AVI<br>upper limit | Factory Setting | 100.0%  |  |
|       | Setting Options                                      | -100.0%~10      | 0.0%    |  |
| DC 17 | AVI input filter time                                | Factory Setting | 0.10s   |  |
| F3.17 | Setting Options                                      | 0.00s~10.0      | 00s     |  |
| E5 18 | ACI lower limit                                      | Factory Setting | 4.00mA  |  |
| 13.10 | Setting Options                                      | 0.00mA~20.00mA  |         |  |
| F5.19 | ACI lower limit<br>corresponding to setting<br>value | Factory Setting | 0.0%    |  |
|       | Setting Options                                      | -100.0%~100.0%  |         |  |
| E5 20 | ACI upper limit                                      | Factory Setting | 20.00mA |  |
| F3.20 | Setting Options                                      | 0.00V~10.00V    |         |  |
| F5.21 | ACI upper limit<br>corresponding to setting<br>value | Factory Setting | 100.0%  |  |
|       | Setting Options                                      | -100.0%~100.0%  |         |  |
| E5 22 | ACI input filter time                                | Factory Setting | 0.10s   |  |
| F5.22 | Setting Options                                      | 0.00s~10.0      | )0s     |  |

These parameters are used to define the relationship between the analog input and the corresponding setting. When the analog input exceeds the scope between the defined upper and lower input limits, the analog value is calculated as the upper or lower input limits reached.

When the analog input is current input, 1 mA current corresponds to 0.5 V voltage. In different applications, 100% of analog input corresponds to different nominal values. For details, refer to the description of different applications.

The following examples illuminate the setting situations.



Analog Input and Correspond Setting

| F5 23       | M1 On delay     | Factory Setting                       | 0.0s |
|-------------|-----------------|---------------------------------------|------|
| 1 5.25      | Setting Options | $0.0\mathrm{s}\sim6000.0\mathrm{s}$   |      |
| F5 24       | M1 Off delay    | Factory Setting                       | 0.0s |
| 13.24       | Setting Options | $0.0\mathrm{s}~\sim~6000$             | 0.0s |
| F5 25       | M2 On delay     | Factory Setting                       | 0.0s |
| 15.25       | Setting Options | $0.0\mathrm{s}~\sim~6000.0\mathrm{s}$ |      |
| F5.24       | M2 Off delay    | Factory Setting                       | 0.0s |
| 15.20       | Setting Options | $0.0\mathrm{s}~\sim~6000.0\mathrm{s}$ |      |
| F5.27~F5.30 |                 | Reserved                              |      |
| F5 30       | VDI On delay    | Factory Setting                       | 0.0s |
| F5.30       | Setting Options | $0.0\mathrm{s}~\sim~6000.0\mathrm{s}$ |      |
| F5.32       | VDI Off delay   | Factory Setting                       | 0.0s |
|             | Setting Options | $0.0\mathrm{s}~\sim~600$              | 0.0s |

On delay of digital input terminal means the delay time for the setting function of the input terminal to take effect after the input switch is closed.

Off delay of digital input terminal means the delay time for the setting function of the input terminal not to take effect after the input switch is opened.

# 5.7 F6 Group Output Terminals Parameters

8000B series VFD provides 1 multifunctional digital output (with optical coupler), 1 multifunctional relay output, 2 multifunction analog outputs, and 1 virtual multifunctional digital output.

| F6.00 | MO1 output selection                  | Factory Setting | 1 |
|-------|---------------------------------------|-----------------|---|
| F6.01 | VDO output options (For input of VDI) | Factory Setting | 0 |
| F6.02 | Relay 1 output selection              | Factory Setting | 3 |
| F6.03 | Reserved                              |                 |   |

The function options for the multifunctional digital and relay outputs are shown as following table:

| Setting value | Function                                                      | Instructions                                                                                            |
|---------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 0             | No output                                                     | The terminal has no function.                                                                           |
| 1             | VFD FWD running                                               | When the VFD is in FWD running status, the output becomes ON.                                           |
| 2             | VFD REV running                                               | When the VFD is in REV running status, the output becomes ON.                                           |
| 3             | Fault output                                                  | When the VFD stops due to a fault, the output becomes ON.                                               |
| 4             | Frequency detecting level FDT output                          | For details, please refer to F8.12,F8.13                                                                |
| 5             | Frequency reached                                             | For details, please refer to F8.14                                                                      |
| 6             | Running at zero speed                                         | If the VFD runs with the output frequency of 0, the output becomes ON.                                  |
| 7             | Upper limit frequency reached                                 | If the running frequency reaches the upper limit, the output becomes ON.                                |
| 8             | Lower limit frequency reached                                 | If the running frequency reaches the lower limit, the output becomes ON.                                |
| 9             | Frequency setting value<br>less than lower limit<br>frequency | When the selected frequency reference is less than<br>the frequency lower limit, the output becomes ON. |
| 10            | FDT reached                                                   | When the selected frequency reference reach the FDT level, the output becomes ON.                       |
| 11            | Accumulative running time reached                             | If the accumulative running time of the VFD exceeds the time set in F8.17, the output becomes           |

| Setting value | Function                       | Instructions                                                                                                                                                                                                             |
|---------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                | ON.                                                                                                                                                                                                                      |
| 12            | PLC cycle completed            | When simple PLC operation completes one cycle,<br>the output becomes on as a pulse signal with width<br>of 250 ms.                                                                                                       |
| 13            | VFD overload pre-alarm         | The output becomes ON after the pre-alarm time as the VFD reaching pre-alarm threshold value.                                                                                                                            |
| 14            | User Customized Output         | Users can customize the output function, refer to F6.14~f6.18                                                                                                                                                            |
| 15            | Running frequency<br>detection | When the running frequency is less or equal to the setting of F8.22, or is larger or equal to the setting of F8.23, the output becomes ON; When the output frequency is between F8.22 and F8.23, the output becomes OFF. |
| 16            | Terminal input delay output    | As a multifunction digital input is set as the function of Terminal Input Delay Output, if the time-lasting exceeds the time setting of F8.21 after input is closed, the output becomes ON.                              |
| 17            | VFD stand-by                   | When the VFD is Power on and is in STOP status<br>without any fault occurring (include LU fault, the<br>output becomes ON; After the VFD turns into<br>running, or there is a fault, the output becomes<br>OFF.          |

| F6.04 | FM output selection | Factory Setting | 0 |
|-------|---------------------|-----------------|---|
| F6.09 | AM output selection | Factory Setting | 0 |

The signal scope of analog output AM and FM is 0V~10V or 0mA~20mA.

The analog output scope calibration is as following table.

| Setting<br>value | Function               | Analog output 0.0%~100.0% Corresponding<br>value                   |
|------------------|------------------------|--------------------------------------------------------------------|
| 0                | Running frequency      | 0~Maximun output frequency                                         |
| 1                | Setting frequency      | 0~Maximun output frequency                                         |
| 2                | Running rotation speed | 0~Running rotation speed correspond to<br>maximum output frequency |

| Setting<br>value | Function               | Analog output 0.0%~100.0% Corresponding value |
|------------------|------------------------|-----------------------------------------------|
| 3                | Output current         | 0~2 times of motor rated current              |
| 4                | Output voltage         | 0~1.2 times of VFD rated voltage              |
| 5~7              | Reserved               |                                               |
| 8                | Analog AVI input value | 0~10V                                         |
| 9                | Analog ACI input value | 0~10V(Or 0~20mA                               |

| F6 05 | FM output lower limit                     | Factory Setting | 0.0%                  |
|-------|-------------------------------------------|-----------------|-----------------------|
| 10.05 | Setting Options                           | 0.0~100.0%      |                       |
| F6 06 | FM lower limit corresponding to output    | Factory Setting | 0.00V                 |
|       | Setting Options                           | 0.00V~10.0      | 0V                    |
| F6 07 | FM output upper limit                     | Factory Setting | 100.0%                |
| 10.07 | Setting Options                           | 0.0~100.09      | <i>/</i> <sub>0</sub> |
| F6.08 | FM upper limit corresponding to output    | Factory Setting | 10.00V                |
|       | Setting Options                           | 0.00V~10.00V    |                       |
| F6 10 | AM output lower limit                     | Factory Setting | 0.0%                  |
| 10.10 | Setting Options                           | 0.0~100.0%      |                       |
| F6.11 | AM lower limit<br>corresponding to output | Factory Setting | 0.00mA                |
|       | Setting Options                           | 0.00mA-20.00mA  |                       |
| F6 12 | AM output upper limit                     | Factory Setting | 100.0%                |
| 10.12 | Setting Options                           | 0.0~100.0%      |                       |
| F6.13 | AM upper limit<br>corresponding to output | Factory Setting | 20.00mA               |
|       | Setting Options                           | 0.00mA-20.00    | 0mA                   |

The above function codes define the corresponding relation between the FM/AM output range and the analog output signal limits. When the output exceeds the scope between the defined upper and lower input limits, the analog output signal is calculated as the upper or lower input limits reached.

When the analog output is current output, 1mA current corresponds to 0.5V voltage.

In different applications, 100% of analog output corresponds to different nominal values. For details, refer to the description of different applications.



FM/AM Output and Analog Signal

|       | User defined output<br>variability option (EX) | Factory Setting                                                                                                                                                                                                                                                                          | 0    |
|-------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| F6.14 | Setting Options                                | 0:Running frequency<br>1:Setting frequency<br>2:DC bus voltage<br>3:Output current<br>4:Output voltage<br>5:Sign of start and stop sta<br>6:Sign of control status<br>7:Counter value<br>8:Counting meter value<br>9:Inverter module tempera<br>10:AVI input value<br>11:ACI input value | ıtus |

This parameter is used as the selection of reference variable for the user defined output. The selected EX is used as the comparison value.

|       | Comparison method of<br>user defined output | Factory Setting             | 0 |
|-------|---------------------------------------------|-----------------------------|---|
|       |                                             | Units digit: comparison tes | t |
|       |                                             | method                      |   |
|       |                                             | 0: Equal (EX==X1)           |   |
|       | Setting Options                             | 1: Equal or greater than    |   |
| F6.15 |                                             | 2: Equal or less than       |   |
|       |                                             | 3: Interval comparison      |   |
|       |                                             | $(X1 \leq EX \leq X2)$      |   |
|       |                                             | 4:Bits test (EX&X1=X2)      |   |
|       |                                             | Tens digit : output method  |   |
|       |                                             | 0: False value output       |   |
|       |                                             | 1: True value output        |   |

Unit digit selection defines the comparison method: Take the variable selected by F6.14 as the test object and compare it with the comparison value set by F6.17 and F6.18.

Tens digit selection defines output method: Selection of the false or true value output mode. The false value output mode means if it cannot meet the comparison condition, it will output, and if it can meet the condition it won't output. The true value output mode means if it can meet the comparison condition, it will output, and if it can meet the comparison condition, it will output, and if it can meet the comparison condition, it will output, and if it can meet the comparison condition, it will output, and if it can meet the comparison condition it won't output.

| F6.16 | User defined output dead zone | Factory Setting | 0 |
|-------|-------------------------------|-----------------|---|
|       | Setting Options               | 0~65535         |   |

When the comparison method of F6.15 is greater than /equal to or less than or equal to, F6.16 is used to define the dead zone that take comparison value X1 as zone center. The dead zone only takes effect for F6.15 comparison method 1 and 2, not for method 0, 3 and 4. For example, When F6.15 is set as 11, as the EX increases from zero and become greater than or equal to X1 + F6.30, the output is valid; when the EX decreased until less than or equal to X1.F6.30, output is invalid.

| F6 17 | Output comparison value X1 | Factory Setting | 0    |
|-------|----------------------------|-----------------|------|
| 10.17 | Setting Options            | 0~65535         |      |
| E6 19 | Output comparison value X2 | Factory Setting | 0    |
| 10.18 | Setting Options            | 0~6             | 5535 |

This two parametersis used to set the comparison value of user-defined output.

The following is an example of user-defined output:

1. When the setting frequency is require to be greater than or equal to 20.00HZ, the relay is closed;

Set the parameters as follows: F6.02 = 14, F6.28 = 1, F6.15 = 11, F6.16 = 0, F6.31 = 2000;

2. When the bus voltage is require to be less than or equal to 500.0V, the relay is closed; In order to avoid relay operates frequently when the detection voltage fluctuate  $\pm$ 5V at 500.0V, it requires to process the dead intervalwithin the range of (500.0-5.0) - (500.0 + 5.0).

Set the parameters as follows: F6.02 = 41, F6.28 = 2, F6.29 = 01, F6.30 = 50, F6.31 = 5000;

3. When the AC drive is reversed, the relay is closed:

Set the parameters as follows: F6.02 = 41, F6.28 = 5, F6.29 = 14, F6.31 = 8, F6.32 = 8;

4. When AI1 input is greater than 3.00V and less than or equal to 6.00V, the relay is closed:

Set the parameters as follows: F6.02 = 41, F6.28 = 13, F6.29 = 13, F6.31 = 300, F6.32 = 600

## 5.8 F7 Group Display Interface Parameters

| F7.00 | User Password   | Factory Setting | 0 |
|-------|-----------------|-----------------|---|
|       | Setting Options | 0~9999          |   |

The password protection will take effect after this parameter is set as a non zero digit.

0000: Clear the password being set before, and disable password protection; Restoring factory setting can also clear password.

After password is set and has take effect, if the password isn't correct, user can not enter parameter menu display. Only give a correct password to enter parameter display and edition mode. The password being set must be keep in mind.

Password protection will take effect 1 minute after withdrawing from parameter edition mode. While the password protection has been enabled, "0.0.0.0" will be displayed first as the PRGM is pressed for entering parameter edition mode. Password must be input correctly, or the edition mode will never been enabled.

| F7.01 | Parameter group hiding | Factory Setting | 0000 |
|-------|------------------------|-----------------|------|
|       | Setting Options        | 0000~FFFF       |      |

This parameter is for user to hide the designated group(s) of parameters and not be displayed.

Example: With setting value 0003, it means F0 and F1 groups are hidden.

| F7.02 | Reserved |
|-------|----------|
|       |          |

|       | REV/JOG<br>key function | Factory Setting 2                                                                                                          |   |
|-------|-------------------------|----------------------------------------------------------------------------------------------------------------------------|---|
| F7.03 | Setting Options         | 0:Switch display status<br>1:Clear UP/DOWN setting<br>2:Reverse running<br>3:Forward jog running<br>4:Quick debugging mode | 5 |

|       |                                 | 5: Command Source Switching between<br>Keypad and outer source(terminal or<br>communication)                                                                                                      |   |
|-------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|       | STOP/RESET key stop<br>function | Factory Setting                                                                                                                                                                                   | 0 |
| F7.04 | Setting Options                 | 0:Only valid for keypad setting<br>1:Valid for both keypad setting and termi<br>setting<br>2:Valid for both keypad setting and<br>communication interface setting<br>3:Valid for all control mode |   |

| F7.05 | Reserved |
|-------|----------|
|       |          |

|       | Running status display selection 1       | Factory Setting                                                                                                                                                                                                                                                                                                                                                                                                              | 35                         |
|-------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| F7.06 | Setting Options                          | 0~0xFFFF<br>BIT0:Running frequency<br>BIT1:Setting frequency<br>BIT2:DC bus voltage<br>BIT3:Output voltage<br>BIT4:Output current<br>BIT5:Running speed<br>BIT6:Linear speed<br>BIT6:Linear speed<br>BIT7:Reserved<br>BIT9:PID setting value<br>BIT10:PID feedback value<br>BIT11:Input terminals stat<br>BIT11:Output terminals stat<br>BIT13:Reserved<br>BIT14:Counter value<br>BIT15:Current step of mul<br>speed and PLC | e<br>us<br>atus<br>ti-step |
|       | Running<br>status display<br>selection 2 | Factory Setting                                                                                                                                                                                                                                                                                                                                                                                                              | 0                          |
| F7.07 | Setting Options                          | 1~0xFFFF<br>BIT0:AVI value<br>BIT1: ACI value<br>BIT2:Reserved<br>BIT3: Motor overload ratio                                                                                                                                                                                                                                                                                                                                 |                            |

|       |                               | BIT4: Inverter overload ratio<br>BIT5:Running time<br>BIT6:Counting meter value<br>BIT7~BIT15: Reserved                                                                                                                                                                                                                                                         |                               |
|-------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|       | Stop status display selection | Factory Setting                                                                                                                                                                                                                                                                                                                                                 | 3                             |
| F7.08 | Setting Options               | 0~0xFFFF<br>BIT0: Setting frequency<br>BIT1: DC bus voltage<br>BIT2:Input terminal status<br>BIT3:Output terminal status<br>BIT4:PID setting value<br>BIT5:PID feedback value<br>BIT6:AVI value<br>BIT7:ACI value<br>BIT7:ACI value<br>BIT8:Reserved<br>BIT9: Current step of mult<br>PLC<br>BIT10:Reserved<br>BIT11:Counting meter val<br>BIT12~BIT15:Reserved | us<br>ti-step speed and<br>ue |

While the VFD is in running or stop status, monitoring of status data will be defined by these parameters which are binary numbers in 16bits. If any of the bits is set as 1, the corresponding status data can be selected and monitored by  $\langle$  Key. If the bit is set as 0, the corresponding status data cannot be monitored. Note: Convert binary number into hexadecimal number before setting parameters of F7.06~F7.08.

Note: Digital input and output terminal status is displayed in decimal number, with M1(MO1) as the lowest bit. For example, as digit input status is displayed as 3, it represents M1 and M2 are both closed, with other terminals opened.

| F7.09 | Inverter module temperature | 0~100℃  |
|-------|-----------------------------|---------|
| F7.10 | Inverter software version   | *.**    |
| F7.11 | Accumulative running time   | 0~9999h |
| F7.12 | Accumulative power-on time  | 0~9999h |
| F7.13 | Reserved                    |         |

These parameters can only be checked and cannot be modified.

Inverter module temperature: displays the IGBT module temperature. Different model has different IGBT over-temperature threshold.

Inverter software version: DSP embedded software version.

Accumulative running time: displays the accumulative running time as the VFD has recorded.

Accumulative power-on time: displays the accumulative power-on time as the VFD has recorded.

| F8.00 | Jog running frequency            | Factory Setting | 5.00Hz                    |
|-------|----------------------------------|-----------------|---------------------------|
|       | Setting Options                  | 0.00~F0.10      |                           |
| F8.01 | Jog running acceleration<br>time | Factory Setting | Defined by inverter model |
|       | Setting Options                  | 0.1~3600s       |                           |
| F8.02 | Jog running deceleration<br>time | Factory Setting | Defined by inverter model |
|       | Setting Options                  | 0.1~3600s       |                           |

## **5.9 F8 Group Auxiliary Function Parameters**

These parameters define the jogging frequency, acceleration and deceleration time. The jogging procedure is according to start mode F1.00=0(Start directly) and Stop mode F1.05=0(Decelerate to stop).

Jog running acceleration time is the interval time for the VFD to accelerate from 0Hz to max. output frequency(F0.10).

Jog running deceleration time is the interval time for the VFD to decelerate from max. output frequency(F0.10) to 0Hz.

| F8 03 | Acceleration time 2 | Factory Setting Defined by inverter mod |                           |
|-------|---------------------|-----------------------------------------|---------------------------|
| 18.05 | Setting Options     | 0.1~3600s                               |                           |
| E8 04 | Deceleration time 2 | Factory Setting                         | Defined by inverter model |
| 10.04 | Setting Options     | 0.1~3600s                               |                           |
| E9 05 | Acceleration time 3 | Factory Setting                         | Defined by inverter model |
| F8.05 | Setting Options     | 0.1~3600s                               |                           |
| 50.04 | Deceleration time 3 | Factory Setting                         | Defined by inverter model |
| 18.00 | Setting Options     | 0.1~3600s                               |                           |
| E9 07 | Acceleration time 4 | Factory Setting                         | Defined by inverter model |
| F8.07 | Setting Options     | 0.1~3600s                               |                           |
| F8.08 | Deceleration time 4 | Factory Setting                         | Defined by inverter model |
|       | Setting Options     | 0.1~3600s                               |                           |

For the VFD acceleration and deceleration time, there are F0.18 and F0.19 and the above-mentioned three pairs of acceleration and deceleration time, all these have the same definition. Please refer to the descriptions of parameter F0.18 and F0.19.

During the operation of AC drive, acceleration/deceleration time1~4 can be chosen through combinations of multi-function digital input terminals. For more details, see the descriptions of function code 21 and 22 for parameter F5.01 to F5.05.

| E8 00 | Jump frequency 1     | Factory Setting       | 0.00Hz |
|-------|----------------------|-----------------------|--------|
| 18.09 | Setting Options      | 0.00~F0.10            |        |
| F8.10 | Jump frequency 2     | Factory Setting       | 0.00Hz |
|       | Setting Options      | 0.00~F0.10            |        |
| F8.11 | Jump frequency width | Factory Setting 0.00H |        |
|       | Setting Options      | 0.00~F0.10            |        |

If the frequency reference is within the frequency jump range, the actual running frequency will be the jump frequency boundary close to the frequency reference.

Setting the jump frequency helps to avoid the mechanical resonance point of the load. These series VFD supports two jump frequencies. If both are set to 0, the frequency jump function is disabled.



Jump Frequency Illustration

| E9 12 | Frequency detection value(FDT) | Factory Setting | 50.00Hz |
|-------|--------------------------------|-----------------|---------|
| 10.12 | Setting Options                | 0.00~F0         | .10     |
| E9 12 | FDT hysteresis                 | Factory Setting | 5.00%   |
| 10.15 | Setting Options                | 0.0~100         | .0%     |

When the running frequency is higher than frequency detection value, VFD digital output is ON if its corresponding parameter is set as function code 4 through F6.00~F6.02. When the running frequency is lower than frequency detection value minus FDT hysteresis, VFD digital output is OFF.

The above-mentioned parameters are detection point and OFF hysteresis. Parameter F8.18 setting value is as the percentage of frequency detection value F8.12.





| F8.14 | Detecting range of reached<br>frequency | Factory Setting             | 0.00% |
|-------|-----------------------------------------|-----------------------------|-------|
|       | Setting Options                         | 0.0~100.0% (Max. frequency) |       |

When the running frequency is within the detecting range of frequency reference, VFD digital output is ON if its corresponding parameter is set as function code 10 through F6.00~F6.02. This parameter is for setting the detecting range of reaching frequency reference, and the value is the percentage to the maximum frequency, as the following illustration.



Detecting Range of Reached Frequency

| E9 15 | Braking threshold voltage | Factory Setting                        | 120.00% |
|-------|---------------------------|----------------------------------------|---------|
| 10.15 | Setting Options           | 115.0~140.0% (Standard DC bus voltage) |         |

This parameter is the setting of the bus voltage for starting braking. It is for efficiently load braking.

| F8.16 | Speed display coefficient | Factory Setting | 100.00% |
|-------|---------------------------|-----------------|---------|
|       | Setting Options           | 0.1~999.9%      |         |

Adjust this parameter for calibrating rotation speed display.

| F8.17 Option as running time reached | Factory Setting | 0 |
|--------------------------------------|-----------------|---|
|--------------------------------------|-----------------|---|

Settings of what kind of action will be taken as the running time reached.

#### 0: Keep running

1: Stop

| F8 18 | Running time setting | Factory Setting | 9999 |
|-------|----------------------|-----------------|------|
| 10.10 | Setting Options      | 0~99991         | 1    |

| F8.19 | Droop control   | Factory Setting | 0.00Hz |
|-------|-----------------|-----------------|--------|
|       | Setting Options | 0.00Hz~10.00Hz  |        |

This function is for the load leveling in the case of one load driving by several motors.

The droop control refers to the load leveling method, which begins while the load is increasing, and thus the VFD will decrease the output frequency and cut down the load of the corresponding motor which actually has heavier load than others driving the same load, and thus result in even load among motors.

This parameter refers to the lowing rate of VFD output frequency while in droop control mode.

| F8.20 | Panel potentiometer filter<br>time selection | Factory Setting | 0.10s |
|-------|----------------------------------------------|-----------------|-------|
|       | Setting Options                              | 0.00~10.00s     |       |

This parameter is for the setting of filter time of panel potentiometer, and if the time setting is too long the reacting of frequency reference will be too slow, or if the time setting is too short the frequency will be fluctuating as the result of interference.

| F8.21 | Output delay time selection | Factory Setting | 0.0s |
|-------|-----------------------------|-----------------|------|
|       | Setting Options             | 0~9999s         |      |

When the multi-function digit input terminals are defined as "terminal input delay output", this parameter is used to define the delay time for the output function.

| F8.22 | Lower limit of frequency detecting | Factory Setting      | 20.00Hz |
|-------|------------------------------------|----------------------|---------|
|       | Setting Options                    | 0.00~Maxi. frequency | quency  |
| F8.23 | Upper limit of frequency detecting | Factory Setting      | 40.00Hz |
|       | Setting Options                    | 0.00~Maxi. fre       | quency  |

When the multi-function digit output terminals are defined as "Running frequency detection", these two parameters are used to define the upper and lower limits for the frequency detecting. If the running frequency is less or equal to F8.22(Lower limit of frequency detecting), or is greater or equal to F8.23(Upper limit of frequency detecting), the corresponding multi-function digit output terminal will be "ON"; If the running frequency is between F8.22 and F8.23, the terminal will be "OFF".

| F8.24 | Reserved |
|-------|----------|
|       |          |

| F8.25 | Inverter rated power   | Factory Setting | Defined by inverter model |
|-------|------------------------|-----------------|---------------------------|
|       | Setting Options        | 0.4~700.0kW     | άW                        |
| F8.26 | Inverter rated current | Factory Setting | Defined by inverter model |
|       | Setting Options        | 0.0~2000A       |                           |

These parameters are for the reference of the rated power and rated current, not for modification.

| F8.27 | Linear speed display<br>coefficient | Factory Setting                        | 1.00%                  |
|-------|-------------------------------------|----------------------------------------|------------------------|
|       | Setting Options                     | 0.1~ 999.9% (linear spe<br>speed * F8. | ed = mechanical<br>27) |

Linear speed = mechanical revolution \* F8.27. This parameter is for the calibration

of linear speed display.

| F8.28~F8.29 | Reserved |
|-------------|----------|
|             |          |

## 5.10 F9/FE Group PID Control Parameters

PID control is a general method that is used for process control. By performing proportional, integral and differential operations on the difference between the feedback variable and the target value, it adjusts the output frequency and constitutes a feedback system to stabilize the controlled variable around the target value. It is applied to process control such as flow control, pressure control and temperature control. The principle block diagram of PID control is as follows:



|                     | PID setting source |     |                       | Factory value           | 0       |
|---------------------|--------------------|-----|-----------------------|-------------------------|---------|
| F9.00 Setting range | 0                  | Key | pad Preset value(F9.0 | )1)                     |         |
|                     |                    | 1   | Analog terminal AVI   |                         |         |
|                     | Setting range      | 2   | Ana                   | log terminal ACI        |         |
|                     |                    | 3   | Con                   | munication setting      |         |
|                     |                    | 4   | Mul                   | ti-step speed input ter | rminals |

When the frequency reference selection is PID, namely F0.03 is selected as 8, this function is enabled. This parameter determines the given channel of process PID target value.

The target amount of process PID is a relative value, setting 100% corresponds to 100% of the feedback signal in controlled system; The system will conduct the

calculation based on relative values (0 to 100%).

Note: Multi-step speed input terminals can be achieved by relative settings of FD parameter group, and the settings are not frequency but the relative values in percentage of the feedback's full range.

| F9.01 | PID preset value | Factory Setting | 0.00% |
|-------|------------------|-----------------|-------|
|       | Setting Options  | 0.0%~100.       | 0%    |

Select F9.00=0, namely the target reference is keypad setting. This parameter needs to be set. The base value of this parameter is the feedback reference of this system.

| PID feedback        |               | selection         | Factory value       | 0      |
|---------------------|---------------|-------------------|---------------------|--------|
| F9.02 Setting range | 0             | Analog terminal A | VI                  |        |
|                     | Setting range | 1                 | Analog terminal ACI |        |
|                     | Setting range | 2                 | AVI+ACI             |        |
|                     |               | 3                 | Communication int   | erface |

Select PID Feedback Channel by this parameter.

Note: Do not select the target and feedback channel as the same one, or the PID controller will not be effect.

|                  | PID control cha |   | Factory value | 0 |
|------------------|-----------------|---|---------------|---|
| F9.03 Setting ra | Sotting range   | 0 | Positive      |   |
|                  | Setting range   | 1 | Negative      |   |

0: PID control is positive. When the feedback value is greater than the PID setting, the AC drive's output frequency will decrease to let the feedback system reaching a new balance. For example, a winding tension control requires positive PID controlling.

1: PID control is negtive. When the feedback value is greater than the PID setting,

the AC drive's output frequency will increase to let the feedback system reaching a new balance. For example, the unwinding tension control requires negtive PID controlling.

| E0.04 | Proportional gain (Kp1) | Factory Setting | 20.0% |
|-------|-------------------------|-----------------|-------|
| 19.04 | Setting Options         | 0.0~100.0%      |       |
| E0.05 | Integral time (Ti1)     | Factory Setting | 2.00s |
| 19.05 | Setting Options         | 0.01~10.0       | 0s    |
| E0.06 | Differential time (Td1) | Factory Setting | 0.00s |
| F9.06 | Setting Options         | 0.00~10.00s     |       |
|       | Proportional gain (Kp2) | Factory Setting | 20.0% |
| FE.00 | Setting Options         | 0.0~100.0%      |       |
| EE 01 | Integral time (Ti2)     | Factory Setting | 2.00s |
| FE.01 | Setting Options         | 0.01~10.0       | 0s    |
| FE.02 | Differential time (Td2) | Factory Setting | 0.00s |
|       | Setting Options         | 0.00~10.00s     |       |

Proportional gain(Kp1, Kp2): It decides the regulating intensity of the PID regulator. The higher the Kp is, the larger the regulating intensity is. The value 100.0 indicates when the deviation between PID feedback and PID setting is 100.0%, the adjustment amplitude of the PID regulator on the output frequency reference is the maximum frequency.

Integral time(Ti1, Ti2): It decides the integral regulating intensity of PID controller by the difference between the feedback variable and the target value. The integral time refers to the time when the deviation between PID feedback and PID setting is 100.0%, the integral regulator performs continuous adjustment for the time to let hen the adjustment amplitude reaches the maximum frequency. The shorter the integral time is, the largerthe regulating intensity is.

Differential time (Td1, Td2): It decides the regulating intensity of the PID controller on the deviation changing rate between feedback and target. Differential time is the time within which the feedback value change reaches 100.0%, and then the adjustment amplitude reaches the maximum frequency. The longer the differential time is, the larger the regulating intensity is.

PID is the most commonly used control algorithm in process control, the effect are different to each part of the algorithm. The following is a brief introduction to the algorithm principle and commissioning procedure.

Proportional Control(P): With a deviation appears between PID feedback and setting, PID controller will give an output proportional to the deviation. If the deviation is stable, the output is also stable. Proportional control can respond rapidly to the fluctuation of feedback. But with proportional control only, it cannot achieve zero-deviation control. The higher the proportional gain is, the faster the regulating speeds is, but if the gain is too high it will result in oscillation. To commission the proportional control, first it is needed to set the integral time to the longest value, and the differential time to zero. Only use proportional control to let the system start operating, and then adjust the PID setting to monitor the deviation between feedback and setting(static error). If the static error keeps in the direction of PID setting adjustment(i.e. As increasing the PID setting, and the feedback is always less than the setting after the system reaching a stable state), then it is needed to increase the proportional gain, or it is needed to decrease the gain. Repeat this procedure until the static error is fairly small(it is hard to get rid off static error).

Integral Control (I): With a deviation appears between PID feedback and setting, PID controller will give an output which is accumulating continuously. If the deviation exists, the output of adjustment will keep on increasing, until the deviation disappears. Integral control can eliminate static errors effectively. With the integral control getting too strong, repeating overshoot will appear, resulting in unstable state of system and finally oscillation. The feature of oscillation under strong integral control is the PID feedback will swing around the PID setting, and the amplitude will keep on increasing until oscillating happen. For adjustment of the integral time, it is commonly modified from long to short, step by step, while monitoring the effect of adjustment, until it meets the requirement of speed to become stable.

Differential Regulation (D): When the deviation between PID feedback and setting is varying, PID controller will give an output which is proportional to the varying rate of deviation. The output will be relative to varying rate and direction of the deviation only, not the deviation's direction and value. The effect of differential regulation is to regulate the system by the varying trend of feedback signal. Thus it will control the variation of feedback signal. Differential regulation should be used with extreme caution, because it could easily lead to the amplification of system interference, especially the interference in high frequency.

| F0.07 | Sampling period (T)         | Factory Setting | 0.10s |
|-------|-----------------------------|-----------------|-------|
| 19.07 | Setting Options             | 0.01~100.0s     |       |
| E0.09 | PID control deviation limit | Factory Setting | 0.00% |
| 19.00 | Setting Options             | 0.0~100.0%      |       |

Sampling period(T): It refers to the sampling period of feedback signal, and the PID control calculates once a sampling period. The longer the sampling period is, the slower the response time.

PID control deviation limit: The limit of PID feedback deviation to PID setting value, which is for the PID control output as in following illustration. Between the upper and lower PID control deviation limit, PID control will stop regulating. Make proper setting of this parameter will result in accuracy, stability of PID control response.



PID Control Deviation Limit and PID Output

| F0 00 | Feedback loss detecting value | Factory Setting | 0.00% |
|-------|-------------------------------|-----------------|-------|
| 19.09 | Setting Options               | 0.0~100.0%      |       |
| FQ 10 | Feedback loss detecting time  | Factory Setting | 1.0s  |
| 19.10 | Setting Options               | 0.0~3600.0s     |       |

Feedback lost detecting value: This value corresponds to the full range(100%), and the system always keep on monitoring the PID feedback value. As the feedback value is less or equal to the feedback lost detecting value, a timing process is trigged to start. If the timing is exceeds the feedback lost detecting time, the system will display an alarm code indicating PID feedback lost.

| PID sleep funct     |               | tion option        | Factory value | 0         |
|---------------------|---------------|--------------------|---------------|-----------|
| F9.11 Setting range | 0             | PID normal working |               |           |
|                     | Setting range | Setting range 1    |               | PID sleep |

0: The VFD runs with normal PID control operation, the sleep function is disabled.

1: The VFD runs with sleep PID control operation, the sleep function is enabled.

| F9.12                 | PID sleep detecting delay time                      | Factory Setting | 3.0s    |
|-----------------------|-----------------------------------------------------|-----------------|---------|
|                       | Setting Options                                     | 0.0~3600.       | 0s      |
| PID wake-up threshold |                                                     | Factory Setting | 0.00%   |
| F9.15                 | Setting Options                                     | 0.0~100.0       | %       |
| F9.14                 | PID wake-up detecting<br>delay time                 | Factory Setting | 3.0s    |
|                       | Setting Options                                     | 0.0~3600.0s     |         |
| F9.15                 | Lower retaining frequency<br>of PID sleep detecting | Factory Setting | 10.00Hz |
|                       | Setting Options                                     | 0.00Hz~20.00Hz  |         |

As PID sleep is selected, VFD keeps on monitoring the feedback and compares it to the PID setting. If feedback is higher than setting, VFD will start sleep detecting. Then after PID sleep detecting delay time and if the feedback is still higher than setting, VFD will decrease output frequency gradually until Lower retaining frequency of PID sleep detecting, and keep PID Lower retaining frequency running time at this retaining frequency. If the feedback is still higher than the setting, VFD will decrease output frequency to 0Hz and enter sleeping mode. During the above process, if the feedback is lower than the setting, sleep detecting will be fail and VFD returns to PID control mode. While in sleeping mode, if the feedback is lower than PID wake-up threshold, VFD will start PID wake-up detecting. After PID wake-up detecting delay time, if the feedback is still lower than wake-up threshold, wake-up will be success and VFD returns to PID control mode, or it is fail for wake-up. If the setting of PID wake-up threshold is too high it will result in VFD restarting freqenctly, or if it is too low it will result in too low pressure of output.

| F9.16 | PID Lower retaining<br>frequency running time | Factory Setting 10.0  |  |
|-------|-----------------------------------------------|-----------------------|--|
|       | Setting Options                               | 0.0~3600.0s           |  |
| F9.17 | PID sleep threshold                           | Factory Setting 80.0s |  |

| Setting Options | F9.13~100.0%  |
|-----------------|---------------|
| Setting Options | 19.15 100.070 |

When F9.11 setting is PID sleep mode, VFD continues verifying PID feedback to find if it is greater than the setting value of F9.17 "PID sleep threshold". If it is true, VFD will go to sleep mode and stop frequency output.

| F9.18 | Reserved |
|-------|----------|
|-------|----------|

| FE.03 | PID parameters switching condition  | Factory Setting | 0     |
|-------|-------------------------------------|-----------------|-------|
|       | Setting Options                     | ptions 0~2      |       |
| FF 04 | PID parameter switching deviation 1 | Factory Setting | 20.0% |
| FE.04 | Setting Options                     | 0.0%~FE.05      |       |
| FE.05 | PID parameter switching deviation 2 | Factory Setting | 80.0% |
|       | Setting Options                     | FE.04~100.0%    |       |

This series of VFD uses the first group of PID parameters (F9.04, F9.05, and F9.06) as factory default setting. In some applications, one group of PID parameters cannot fulfill the requirement of process control, and switching to the second group of PID parameters (FE.00, FE.01, and FE.02) is needed according to required conditions.

#### Switching over settings:

1. If FE.03 is set as 1, which means terminal switching, then the function code of designated terminal should be set as 39. If the designated terminal is on, PID control will switch to the second group of PID parameters, or it will switch back to the first group of PID parameters.

2. If FE.03 is set as 2, which means switching by feedback deviation, then the switching over is determined by the result of comparing the deviation between PID setting and PID feedback to the PID parameter switching deviation 1 & 2 (FE0.4 & FE0.5). If the feedback deviation is less than the PID parameter switching deviation 1(FE.04), the first group of PID parameters is chosen for process control;

If the feedback deviation is great than the PID parameter switching deviation 2(FE.05), the second group of PID parameters is chosen; If the feedback deviation is between the PID parameter switching deviation 1 & 2 (FE.04 & FE.05), the PID parameters been used is through the linear calculation between the two groups of PID parameters, as shown in the following diagram.



PID Parameters Switching Over

| FE 06 | PID initial value      | Factory Setting | 0.0%  |
|-------|------------------------|-----------------|-------|
| FE.00 | Setting Options        | 0.0%~100.0%     |       |
| FE.07 | PID initial value time | Factory Setting | 0.00s |
|       | Setting Options        | 0.00s~650.00s   |       |

As PID process start, VFD will output frequency with PID initial value (FE.06) and hold until PID initial value time (FE.07) is over, then it begins to process PID control normally.



PID Initial Value Diagram

|       | PID integration options |               | Factory value                 | 0 |
|-------|-------------------------|---------------|-------------------------------|---|
| FE.08 | Setting range           | Unit's digit: | Integration separation        |   |
|       |                         | 0             | Disabled                      |   |
|       |                         | 1             | Enabled                       |   |
|       |                         | Ten's place:  | Output limit and stop options |   |
|       |                         | 0             | Continuing calculation        |   |
|       |                         | 1             | Stop calculation              |   |

#### **Integration Separation:**

If this option is enabled, and while a terminal's function code is 25 and its input is on, PID control keeps calculating proportion item and differentiation item while stop integration calculation.

#### **Output limit and stop options:**

If the option is "stop calculation", while the PID output reaches the maximum or minimum limit, PID control stop calculation.

If the option is "continuing calculation", then PID will continue calculation at any situation.

| FE.09 | Max. increasing value permitted each PID output | Factory Setting | 1.00% |
|-------|-------------------------------------------------|-----------------|-------|
|       | Setting Options                                 | 0.00%~100.00%   |       |
| FE.10 | Max. decreasing value permitted each PID output | Factory Setting | 1.00% |
|       | Setting Options                                 | 0.00%~100.00%   |       |

These two parameters are for the limiting of the deviation between two times of PID control output (2ms/time), and thus restrain the PID output from rapid increasing. FE.09 and FE.10 are corresponding to forward and reverse running output maximum deviation separately.

| FE.11 | PID reverse output<br>frequency limit | Factory Setting                                  | 0.00Hz |
|-------|---------------------------------------|--------------------------------------------------|--------|
|       | Setting Options                       | 0.00Hz~F0.10                                     |        |
| FF 12 | PID differentiation limit             | Factory Setting                                  | 0.10%  |
| FE.12 | Setting Options                       | 0.00%~100.0%                                     |        |
| FE.13 | PID reverse output<br>frequency limit | Factory Setting                                  | 0.00s  |
|       | Setting Options                       | 0.00s~650.0s                                     |        |
| EE 14 | PID differentiation limit             | Factory Setting                                  | 0.00s  |
| FE.14 | Setting Options                       | 0.00s~60.00s                                     |        |
| FE.15 | PID reverse output<br>frequency limit | Factory Setting                                  | 0.00s  |
|       | Setting Options                       | 0.00s~60.0                                       | )0s    |
| FE.16 | PID differentiation limit             | Factory Setting                                  | 0      |
|       | Setting Options                       | 0: Stop calculation<br>1: Continuing calculation |        |

| FA.00 | Motor overload protection |   | Factory value                                           | 2 |
|-------|---------------------------|---|---------------------------------------------------------|---|
|       | Setting range             | 0 | Protection disabled                                     |   |
|       |                           | 1 | Normal motor with low speed compensation                |   |
|       |                           | 2 | Variable frequency motor without low speed compensation |   |

### 5.11 FA Group Protection Parameters and Fault Records

0: Protection disabled. It means there is no protection with motor overload character in the VFD (Setting which must be carried out with extreme caution).

1: Ordinary motor (With low speed compensation). Because cooling efficiency of an ordinary motor becomes lower in the case of low speed, the corresponding electric thermal protection value should be adjusted suitably. The so-called with low speed compensation here, refers to reducing the threshold value of motor overload protection as the running frequency is below 30Hz.

2: Variable frequency motor (Without low speed compensation). Because the cooling efficiency of a variable frequency motor does not be influenced by its speed, it is no need to adjust the corresponding electric thermal protection value in low speed.

| FA.01 | Motor over load protection<br>current | Factory Setting                   | 100.0% |
|-------|---------------------------------------|-----------------------------------|--------|
|       | Setting Options                       | 20.0%~120.0% (motor rated current |        |


Setting of Motor over load protection current

This parameter can be determined by the following formula:

Motor over load protection=(Allowed maximum load current/VFD rated current)\*100%.

In the case of big VFD driving smaller motor, it is needed to set a correct value to this parameter for the protection of the motor.

| FA.02 | Threshold for frequency reducing at instantaneous power failure | Factory Setting 80.00%              |        |
|-------|-----------------------------------------------------------------|-------------------------------------|--------|
|       | Setting Options                                                 | 70.0%~110.0% (standard bus voltage) |        |
| FA.03 | Frequency reducing rate at<br>instantaneous power failure       | Factory Setting                     | 0.00Hz |
|       | Setting Options                                                 | 0.00Hz~F0.10                        |        |

When frequency reducing rate at instantaneous power failure is set as 0, the function of frequency reducing at instantaneous power failure is disabled.

Threshold for frequency reducing at instantaneous power failure: it refers to the point of voltage which will be reached as the bus voltage dropping after an instantaneous power failure, at that point VFD start to decrease the output frequency in the frequency reducing rate (FA.03) to let the motor working in generating state and keeping the bus voltage by the regenerating power, ensuring the operation of VFD until power on again.

Note: Adjusting these two parameters to prevent down time of product line as VFD tripping caused by power grid switching.

| FA.04 | Over-voltage stalling<br>protection       | Factory Setting 0    |          | 0    |
|-------|-------------------------------------------|----------------------|----------|------|
|       | Setting Options                           | 0                    | Disabled |      |
|       |                                           | 1                    | Enabled  |      |
| FA.05 | Over-voltage stalling<br>protection point | Factory Setting 120% |          | 120% |
|       | Setting Options                           | 110~150%             |          |      |

FA.04: As in deceleration process of VFD, by the influence of load inertia, the motor speed's deceleration rate might be lower than the frequency reducing rate, thus it results in power regeneration to VFD by motor and bus voltage increasing. In some cases with no measure being carried out, it will put the VFD to over voltage fault due to high bus voltage finally.

For 220V single phase VFD the value of parameter Over-voltage stalling protection point FA.05 is 120%, and for 380V three phase VFD this value of FA.05 is 130%.

The principle of over-voltage stalling protection is as following: By sensing bus voltage and comparing to FA.05 (relative to standard bus voltage) which defining the over-voltage stalling point, if the bus voltage is over the point, VFD will stop decreasing output frequency, and will keep running in current frequency until the bus voltage falling to lower than the point. And then VFD will continue to decelerate the motor again. As shown in the following illustration.



Over-Voltage Stalling Protection

| FA 06 | Auto current limiting level                        | Factory Setting | 160%    |
|-------|----------------------------------------------------|-----------------|---------|
| FA.00 | Setting Options                                    | 50~200%         |         |
| FA.07 | Frequency decrease rate<br>during current limiting | Factory Setting | 10.00Hz |
|       | Setting Options                                    | 0.00~50.00Hz/s  |         |

During operation of VFD, the acceleration rate of motor speed may be lower than the increasing rate of output frequency due to heavy loads in some cases, and it will result in fault "over-current when acceleration" and VFD trigging with no measure being carried out.

The principle of auto current limiting is as following: By sensing VFD output current and comparing to FA.06 which defining the current limiting point, if the output current is over the point, VFD will decrease output frequency in the rate value of FA.07, and will return to normal operation until the output current falling to lower than the current limiting point. As shown in the following illustration.



Auto Current Limiting

| FA.08 | Auto current limiting selection | Factory Setting |                            | 0 |
|-------|---------------------------------|-----------------|----------------------------|---|
|       | Setting Options                 | 0               | Enabled                    |   |
|       |                                 | 1               | Disabled at constant speed |   |

| FA.09 | Fault auto-reset times | Factory Setting | 0 |
|-------|------------------------|-----------------|---|
|       | Setting Options        | 0~3             |   |

This parameter is for setting auto reset times of fault when VFD is chosen to automatically reset fault. If the times of resetting is over than this value, the VFD will stop and waiting for maintenance.

| FA.10 | Fault auto-reset interval | Factory Setting | 1.0s |
|-------|---------------------------|-----------------|------|
|       | Setting Options           | 0.1~100.0s      |      |

This parameter defines the waiting time from VFD fault trigging to fault auto resetting.

| FA.11 | Reserved                        |                 |          |  |
|-------|---------------------------------|-----------------|----------|--|
| FA.12 | Phase-lack protection of input  | Factory Setting | 1        |  |
|       | Sotting Options                 | 0               | Disabled |  |
|       | Setting Options                 | 1               | Enabled  |  |
| FA.13 | Phase-lack protection of output | Factory Setting | 1        |  |
|       | Sotting Options                 | 0               | Disabled |  |
|       | Setting Options                 | 1               | Enabled  |  |

FA.12 is for choosing protection of input phase-lack fault or not. In these series of VFD, only those with rated power of 11kW or above have input phase-lack protection. To those with rated power below 11kW have no input phase-lack protection, no matter FA.12 is setting as 0 or 1.

FA.13 is for choosing protection of output phase-lack fault or not.

| FA.14 | Faults type last two time |      |
|-------|---------------------------|------|
| FA.15 | Fault Type last time      | 0~26 |
| FA.16 | Current fault type        |      |

These parameters record the recent 3 fault types: 0 is no fault,  $1\sim26$  are E001~E026 (FULL). For the details please refer to Trouble Shooting.

| FA.17 | Running frequency at<br>current fault       | Record of running frequency when current fault occurs |
|-------|---------------------------------------------|-------------------------------------------------------|
| FA.18 | Output current at current fault             | Record of output current when current fault occurs    |
| FA.19 | DC bus voltage at<br>current fault          | Record of DC bus voltage when current fault occurs    |
| FA.20 | Input terminal status when fault occurs     |                                                       |
| FA.21 | Output terminal status<br>when fault occurs |                                                       |

# **5.12 FB Group Swing Frequency and Counting Meter Parameters**

The swing frequency function is applied to the textile and chemical fiber industry etc and the applications where traversing and winding functions are required.

The swing frequency function indicates that the output frequency of the VFD swings up and down with the setting frequency as the center. The trace of running frequency at the time axis is shown in the following figure. The swing amplitude is set by FB.00 and FB.01. When FB.01 is set as 0, namely the swing amplitude is 0, the swing frequency is disable.



Swing Frequency Function

| FB.00 | Swing frequency range | Factory Setting 0.00%                      |  |
|-------|-----------------------|--------------------------------------------|--|
|       | Setting Options       | 0.0~100.0% (relative to setting frequency) |  |
| FB.01 | Skip frequency range  | Factory Setting 0.00%                      |  |

| Setting Options | 0.0~50.0% (relative to swing frequency bandwidth) |
|-----------------|---------------------------------------------------|
|-----------------|---------------------------------------------------|

These parameters are definitions of swing frequency range and skip frequency range.

The swing operation frequency is keep within bounds of upper and lower limits of frequency.

Swing amplitude(AW)=Set frequency(Fset) × Swing frequency range(FB.00)

Skip frequency range is the percentage of skip frequency to the swing frequency,

as: Skip frequency=swing frequency × skip frequency range.

| FB.02 | Rising time of swing<br>frequency   | Factory Setting    |                                                   | 5.0s |
|-------|-------------------------------------|--------------------|---------------------------------------------------|------|
|       | Setting Options                     | 0.1~3600.0s        |                                                   | 0s   |
| FB.03 | Dropping time of swing<br>frequency | Factory Setting    |                                                   | 5.0s |
|       | Setting Options                     | 0.1~3600.0s        |                                                   | 0s   |
|       | Fixed length control mode           | Factory<br>Setting | 0                                                 |      |
| FB.04 |                                     | 0                  | Start from zero when power of                     |      |
|       | Setting Options                     | 1                  | Start from record of length of the last power off |      |

0: VFD starts fixed length control from 0 every time it is power on.

1: VFD starts fixed length control from record of the last power off.

VFD can only starts fixed length control during operation mode, and never starts during stop mode

| FB.05 | Roller perimeter for fixed length control | Factory Setting | 100cm |
|-------|-------------------------------------------|-----------------|-------|
|       | Setting Options                           | 0~9999cm        |       |

Set roller perimeter which refers to 1 pulse of discrete signal per round to the multi-function digital input terminal of VFD.

Length counting displaying by VFD=Roller perimeter × accumulation of pulses.

| FB.06 | Fixed length setting | Factory Setting | 1000m |
|-------|----------------------|-----------------|-------|
|       | Setting Options      | 0~9999m         |       |

Set the target fixed length, as the displaying length reached this setting or 9999m, it means the fixed length control is over and the VFD will display "FULL" and stop. To clear the accumulated length value and fault please press STOP key.

| FB.07 | Clear length value | Factory<br>Setting | 0            |
|-------|--------------------|--------------------|--------------|
|       | Setting Options    | 0                  | No operation |
|       |                    | 1                  | Clear        |

This parameter is for the operation of clearing current length value, and after clearing operation the parameter will be reset to 0 automatically.

| FB.08 | Counter value setting Factory<br>Setting |                      | 0                                                |  |
|-------|------------------------------------------|----------------------|--------------------------------------------------|--|
|       | Setting Options                          |                      | FB.09~9999                                       |  |
| FB.09 | Designated counter value                 | Factory 0<br>Setting |                                                  |  |
|       | Setting Options                          | 0~FB.08              |                                                  |  |
| FB.10 | Length unit selection                    | Factory 0<br>Setting |                                                  |  |
|       | Sotting Options                          | 0                    | Actual counting length =<br>displayed length* 1m |  |
|       | Setting Options                          | 1                    | Actual counting length=<br>displayed length* 10m |  |

### 5.13 FC Group RS485 Communication Parameters

| FC.00 | Local address   | Factory Setting | 1 |
|-------|-----------------|-----------------|---|
|       | Setting Options | 0~247           |   |

When the master node's communication frame address is 0, it refers to the broadcast address, and all the slave nodes will receive this frame but never reply. Note: The address of slave node cannot be set as 0.

A local node address must be unique among the whole communication network. This is essential for the peer-to-peer communication between a upper monitor and VFDs.

|       | Baud rate selection | Factory<br>Setting | 3        |
|-------|---------------------|--------------------|----------|
|       | Setting Options     | 0                  | 1200BPS  |
| FC.01 |                     | 1                  | 2400BPS  |
|       |                     | 2                  | 4800BPS  |
|       |                     | 3                  | 9600BPS  |
|       |                     | 4                  | 19200BPS |
|       |                     | 5                  | 38400BPS |

This parameter is used for setting of data transfer speed between upper monitor and VFDs. Note: The baud rate settings of upper monitor and VFDs must be identical, or communication cannot be carried out. The larger the baud rate is, the faster the communication speed.

| FC.02 | Data bit check and format | Factory Setting                        | 0 |  |
|-------|---------------------------|----------------------------------------|---|--|
|       |                           | 0: No check (N, 8, 1) for RTU          |   |  |
|       | Setting Options           | 1: Even parity check (E, 8, 1) for RTU |   |  |
|       |                           | 2: Odd parity check (0, 8, 1) for RTU  |   |  |
|       |                           | 3: No check (N, 8, 2) for RTU          |   |  |
|       |                           | 4: Even parity check (E, 8, 2) for RTU |   |  |

|       |                                      | 5: Odd parity check (0, 8, 2) for RTU |   |  |
|-------|--------------------------------------|---------------------------------------|---|--|
| FC.03 | Communication response<br>delay time | Factory Setting                       | 0 |  |
|       | Setting Options                      | 0~200ms                               |   |  |

Response delay time: It refers to the time span between the time VFD finishes receiving data and the time VFD sends response data. If the response delay time setting is shorter the system processing time, the delay is determined by the system processing time. If the response delay time setting is longer than the system processing time, then after the system processing is finished, it will wait to send data to upper monitor until timing of the response delay time is over.

| FC.04 | Communication timeout<br>fault setting | Factory Setting            | 0.0s |
|-------|----------------------------------------|----------------------------|------|
|       | Setting Options                        | 0.0 (disabled), 0.1~100.0s |      |

When this parameter is set as 0.0, it is disabled.

When this parameter is set as a valid none-zero value, if time span between the current communicating and last communicating exceeds the setting time of FC.04, system will handle the fault according to the setting of FC.05.

Normally, it is set as disabled. It is often set for monitoring communication in case of application where continued communication is required.

| FC.05 | Method of disposing<br>communication timeout<br>fault | Factory<br>Setting | 1                                                             |
|-------|-------------------------------------------------------|--------------------|---------------------------------------------------------------|
|       | Setting Options                                       | 0                  | Alarm and coast to stop                                       |
|       |                                                       | 1                  | No alarm and continue to run                                  |
|       |                                                       | 2                  | No alarm but stop according to $F1.05$ (only when $F0.01=2$ ) |
|       |                                                       | 3                  | No alarm but stop according to F1.05                          |

This parameter is the selection for handling the fault of communication timeout between upper monitor and VFD.

0: Alarm and coast to stop. If time span between the current communicating and last communicating exceeds the setting time of FC.04, VFD will trig an error E016 and coast to stop.

1: No alarm and continue to run. If time span between the current communicating and last communicating exceeds the setting time of FC.04, VFD will continue operating.

2: No alarm but stop according to F1.05 (only when F0.01= 2). Under setting of communication control source, if time span between the current communicating and last communicating exceeds the setting time of FC.04, VFD will decelerate to stop.

3: No alarm but stop according to F1.05 (Under all kinds of control command). No matter what VFD is under any of the keypad control, terminal control or communication control source settings, as time span between the current communicating and last communicating exceeds the setting time of FC.04, VFD will decelerate to stop.

VFD can be set to one of the following methods: shielding the error E016, stopping or continuing operation, when there are communication malfunctions.

|       | Transmission response<br>action | Factory Setting                                                                                                                               | 00               |
|-------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| FC.06 | Setting Options                 | Unit's digit:<br>0: Response to writing<br>1: No response to writing<br>Ten's place:<br>0:Value not saved when po<br>1: Value saved when powe | wer-off<br>r-off |

This parameter is for selection of response or not to the host's message when communication is carried out between upper monitor and VFD.

# 5.14 FD Group Multi-step Speed and Simple PLC Parameters

Simple PLC function is a programmable logic controller (PLC) in the AC drive, which can automatically control the logic of multi-step frequency. In order to meet the technical requirements, it can conduct running time, running direction and running frequency. VFD can realize 16-stage speed variation control and there are four kinds of acceleration and deceleration time for selection. When PLC completes one cycle, ON signal can be output by multi-function digital output terminal MO1 or multi-function relay 1, relay 2 output. For details, see F1.02 ~ F1.05. When the frequency reference selection is multi-speed operation mode (Parameters F0.07, F0.03 and F0.04), it is needed to set FD.00 for required characteristic.

| FD.00 | Simple PLC<br>operation method                   | 0:Stop after operation once<br>time<br>1:Keep the final value<br>after operation once time<br>2:Operation in cycles |         | 0     | 0 |
|-------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------|-------|---|
| FD.01 | Memory option of<br>simple PLC when<br>power-off | 0: Invalid 1:Valid                                                                                                  |         | 0     | 0 |
| FD.02 | Multi-step speed 0                               | -100~100%                                                                                                           | 0.10%   | 0.00% | 0 |
| FD.03 | 0th step running<br>time                         | 0.0~6553s(m)                                                                                                        | 0.1s(m) | 0.0s  | 0 |
| FD.04 | Multi-step speed 1                               | -100~100%                                                                                                           | 0.10%   | 0.00% | 0 |
| FD.05 | 1st step running<br>time                         | 0.0~6553s(m)                                                                                                        | 0.1s(m) | 0.0s  | 0 |
| FD.06 | Multi-step speed 2                               | -100~100%                                                                                                           | 0.10%   | 0.00% | 0 |
| FD.07 | 2nd step running<br>time                         | 0.0~6553s(m)                                                                                                        | 0.1s(m) | 0.0s  | 0 |
| FD.08 | Multi-step speed 3                               | -100~100%                                                                                                           | 0.10%   | 0.00% | 0 |

| FD.09 | 3rd step running<br>time  | 0.0~6553s(m) | 0.1s(m) | 0.0s  | 0 |
|-------|---------------------------|--------------|---------|-------|---|
| FD.10 | Multi-step speed 4        | -100~100%    | 0.10%   | 0.00% | 0 |
| FD.11 | 4th step running<br>time  | 0.0~6553s(m) | 0.1s(m) | 0.0s  | 0 |
| FD.12 | Multi-step speed 5        | -100~100%    | 0.10%   | 0.00% | 0 |
| FD.13 | 5th step running<br>time  | 0.0~6553s(m) | 0.1s(m) | 0.0s  | 0 |
| FD.14 | Multi-step speed 6        | -100~100%    | 0.10%   | 0.00% | 0 |
| FD.15 | 6th step running<br>time  | 0.0~6553s(m) | 0.1s(m) | 0.0s  | 0 |
| FD.16 | Multi-step speed 7        | -100~100%    | 0.10%   | 0.00% | 0 |
| FD.17 | 7th step running<br>time  | 0.0~6553s(m) | 0.1s(m) | 0.0s  | 0 |
| FD.18 | Multi-step speed 8        | -100~100%    | 0.10%   | 0.00% | 0 |
| FD.19 | 8th step running<br>time  | 0.0~6553s(m) | 0.1s(m) | 0.0s  | 0 |
| FD.20 | Multi-step speed 9        | -100~100%    | 0.10%   | 0.00% | 0 |
| FD.21 | 9th step running<br>time  | 0.0~6553s(m) | 0.1s(m) | 0.0s  | 0 |
| FD.22 | Multi-step speed<br>10    | -100~100%    | 0.10%   | 0.00% | 0 |
| FD.23 | 10th step running<br>time | 0.0~6553s(m) | 0.1s(m) | 0.0s  | 0 |
| FD.24 | Multi-step speed<br>11    | -100~100%    | 0.10%   | 0.00% | 0 |
| FD.25 | 11th step running<br>time | 0.0~6553s(m) | 0.1s(m) | 0.0s  | 0 |

| FD.26 | Multi-step speed<br>12                | -100~100%                                                          | 0.10%   | 0.00% | 0 |
|-------|---------------------------------------|--------------------------------------------------------------------|---------|-------|---|
| FD.27 | 12th step running<br>time             | 0.0~6553s(m)                                                       | 0.1s(m) | 0.0s  | 0 |
| FD.28 | Multi-step speed<br>13                | -100~100%                                                          | 0.10%   | 0.00% | 0 |
| FD.29 | 13th step running<br>time             | 0.0~6553s(m)                                                       | 0.1s(m) | 0.0s  | 0 |
| FD.30 | Multi-step speed<br>14                | -100~100%                                                          | 0.10%   | 0.00% | 0 |
| FD.31 | 14th step running<br>time             | 0.0~6553s(m)                                                       | 0.1s(m) | 0.0s  | 0 |
| FD.32 | Multi-step speed<br>15                | -100~100%                                                          | 0.10%   | 0.00% | 0 |
| FD.33 | 15th step running<br>time             | 0.0~6553s(m)                                                       | 0.1s(m) | 0.0s  | 0 |
| FD.34 | Acceleration time<br>of 0th~7th steps | 0~0xFFFF                                                           |         | 0     | 0 |
| FD.35 | Acceleration time of 8th~15th steps   | 0~0xFFFF                                                           |         | 0     | 0 |
| FD.36 | PLC restart method                    | 0: Restart from 1st step<br>1: Restart from break-off<br>frequency | 0       | 0     | 0 |
| FD.37 | PLC operation<br>time unit            | 0: second (s) 1: minute (m)                                        |         | 0     | 0 |

#### FF Group: Reserved Factory Parameters

# **Chapter 6 Trouble Shooting**

# 6.1 Fault and Trouble Shooting

| Fault<br>Code | Fault Type                             | Reason                                                                                                                                                             | Solution                                                                                                                                                                 |
|---------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E001          | Inverter<br>module fault               | <ol> <li>Acceleration time is too short</li> <li>IGBT module damaged</li> <li>Malfunction caused by<br/>interference</li> <li>Grounding is not properly</li> </ol> | <ol> <li>Increase acceleration time</li> <li>Ask for support</li> <li>Inspect external equipment and<br/>eliminate interference</li> <li>Check grounding wire</li> </ol> |
| E002          | Over-current<br>during<br>acceleration | <ol> <li>1: Accelerate too fast</li> <li>2: Input voltage is too low</li> <li>3: Drive capacity is too low</li> </ol>                                              | <ol> <li>Increase acceleration time</li> <li>Inspect the input power supply<br/>or wiring</li> <li>Select larger capacity drive</li> </ol>                               |
| E003          | Over-current<br>during<br>deceleration | <ol> <li>Decelerate too fast</li> <li>Load is too heavy and has<br/>large inertia</li> <li>Drive capacity is too low</li> </ol>                                    | <ol> <li>Increase deceleration time</li> <li>Add suitable braking units</li> <li>Select larger capacity drive</li> </ol>                                                 |
| E004          | Over-current<br>at constant<br>speed   | <ol> <li>Sudden change of load</li> <li>Input voltage is too low</li> <li>Drive capacity is too low</li> </ol>                                                     | <ol> <li>Check the load</li> <li>Inspect the input power supply<br/>or wiring</li> <li>Select larger capacity drive</li> </ol>                                           |
| E005          | Over-voltage<br>during<br>acceleration | 1: Input voltage abnormal<br>2: Restart the motor when<br>instantaneous trip-off occurs                                                                            | 1: Inspect input power<br>2: Avoid prompt restart when<br>trip-off                                                                                                       |
| E006          | Over-voltage<br>during<br>deceleration | <ol> <li>Decelerate too fast</li> <li>Load is too heavy and has<br/>large inertia</li> <li>Input voltage abnormal</li> </ol>                                       | 1: Increase deceleration time<br>2: Add suitable braking units                                                                                                           |
| E007          | Over-voltage<br>at constant<br>speed   | <ol> <li>Input voltage abnormal</li> <li>Load inertia is too large</li> </ol>                                                                                      | <ol> <li>Install input AC reactor</li> <li>Add suitable braking units</li> </ol>                                                                                         |
| E008          | Hardware<br>over-voltage               | <ol> <li>Input voltage abnormal</li> <li>Decelerate too fast</li> </ol>                                                                                            | 1: Inspect the input power supply<br>or wiring                                                                                                                           |

| Fault<br>Code | Fault Type                 | Reason                                                                                                                                                                                                                                                                                                                                                                        | Solution                                                                                                                                                                                                                                                                                |
|---------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                            | 3: Load inertia is too large                                                                                                                                                                                                                                                                                                                                                  | <ul><li>2:Increase deceleration time</li><li>3: Add suitable braking units</li></ul>                                                                                                                                                                                                    |
| E009          | Under voltage<br>of DC bus | Input voltage is too low                                                                                                                                                                                                                                                                                                                                                      | Inspect power grid                                                                                                                                                                                                                                                                      |
| E010          | Drive<br>overload          | 1: Accelerate too fast<br>2: Restart the motor when<br>instantaneous trip-off occurs<br>3: Input voltage is too low<br>4: Load is too heavy                                                                                                                                                                                                                                   | 1:Increase acceleration time<br>2: Avoid prompt restart when<br>trip-off<br>3: Inspect power grid<br>4: Select larger capacity drive                                                                                                                                                    |
| E011          | Motor<br>overload          | <ol> <li>Input voltage is too low</li> <li>Improper setting of motor<br/>rated current</li> <li>Improper motor's overload<br/>protection threshold</li> <li>Drive capacity is too low</li> </ol>                                                                                                                                                                              | <ol> <li>Inspect voltage of power grid</li> <li>Properly setting of motor rated<br/>current</li> <li>Inspect load and boost the<br/>torque</li> <li>Select larger capacity drive</li> </ol>                                                                                             |
| E012          | Phase-lack of input        | Phase-lack of R, S, T                                                                                                                                                                                                                                                                                                                                                         | Inspect the input power supply or wiring                                                                                                                                                                                                                                                |
| E013          | Phase-lack of output       | <ol> <li>There is a broken wire in<br/>the output cable</li> <li>There is a broken wire in the<br/>motor winding.</li> <li>Output terminals are loose</li> </ol>                                                                                                                                                                                                              | Check the wiring and installation                                                                                                                                                                                                                                                       |
| E014          | Module<br>overheat         | <ul> <li>1:Instantaneous over current of<br/>inverter</li> <li>2:Output short circuit</li> <li>3: Cooling fans of inverter stop<br/>or damaged. Obstruction of<br/>ventilation channel</li> <li>4: Ambient temperature is too<br/>high</li> <li>5: The cables or terminals are<br/>loose</li> <li>6: Power circuit abnormal</li> <li>7: Control PCB board abnormal</li> </ul> | <ol> <li>Refer to over current solutions</li> <li>Use the good wire</li> <li>Replace cooling fan and clear<br/>the ventilation channel</li> <li>Decrease the ambient<br/>temperature</li> <li>Inspect and tighten the wire and<br/>terminals</li> <li>and 7: Ask for support</li> </ol> |

| Fault<br>Code | Fault Type                    | Reason                                                                                                                                                                      | Solution                                                                                                                                                                                                                                     |  |
|---------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| E015          | External fault                | External fault input terminals take effect                                                                                                                                  | Inspect external equipment                                                                                                                                                                                                                   |  |
| E016          | Communicati<br>on fault       | <ol> <li>Improper baud rate setting</li> <li>Receive wrong data</li> <li>Communication is interrupted<br/>for long time</li> </ol>                                          | <ol> <li>Set proper baud rate</li> <li>Push STOP/RESET to reset and<br/>ask for support</li> <li>Check communication devices<br/>and cables</li> </ol>                                                                                       |  |
| E017          | Reserved                      |                                                                                                                                                                             |                                                                                                                                                                                                                                              |  |
| E018          | Current<br>detection fault    | <ol> <li>Wires or connectors of<br/>control board are loose</li> <li>Amplifying circuit abnormal</li> <li>Hall sensor is damaged</li> <li>Power circuit abnormal</li> </ol> | 1:Check the wiring and<br>connectors<br>2,3 and 4: Ask for support                                                                                                                                                                           |  |
| E019          | Motor<br>auto-tuning<br>fault | 1: Improper setting of motor<br>rated parameters<br>2: Overtime of autotuning<br>3: Too much error                                                                          | <ol> <li>Set rated parameters according<br/>to motor nameplate</li> <li>Check motor's wiring</li> <li>Make motor uncoupled with<br/>load and autotune again</li> </ol>                                                                       |  |
| E020          |                               | Reserved                                                                                                                                                                    |                                                                                                                                                                                                                                              |  |
| E021          |                               | Reserved                                                                                                                                                                    |                                                                                                                                                                                                                                              |  |
| E022          | EEPROM<br>fault               | 1: Read/ Write fault of control<br>parameters<br>2: EEPROM damaged                                                                                                          | Push STOP/RESET to reset and ask for support                                                                                                                                                                                                 |  |
| E023          | Overload<br>pre-alarm         | 1: Accelerate too fast<br>2: Restart the motor when<br>instantaneous trip-off occurs<br>3: Input voltage is too low<br>4: Load is too heavy                                 | <ul> <li>1:Increase acceleration time</li> <li>2: Avoid prompt restart when</li> <li>trip-off</li> <li>3: Inspect power grid</li> <li>4: Select larger capacity inverter</li> <li>5: Set the suitable parameter of</li> <li>F3.10</li> </ul> |  |
| E024          | PID feedback<br>loss fault    | 1: Sensor disconnect or loose<br>contact<br>2: Detecting time of<br>disconnection is too short                                                                              | <ol> <li>Check sensor installation and<br/>connection</li> <li>Extend the detecting time of<br/>sensor disconnection</li> </ol>                                                                                                              |  |

| Fault<br>Code | Fault Type              | Reason                                                                                           | Solution                                     |
|---------------|-------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------|
|               |                         | 3: No feedback signal of system                                                                  |                                              |
| E025          | Running time<br>reached | Accumulative running time reached                                                                | Reset. Refer to parameter F8.17 for details. |
| FULL          | Counting<br>meter full  | 1: Setting value of counting<br>meter reached<br>2: The value of counting meter<br>gets to 9999m | Push STOP/RESET key to reset                 |

# **6.2** Common Faults and Solutions

Inverter may have following faults or malfunctions during operation, please refer to the following solutions.

#### 6.2.1 No display after power on

• Inspect whether the voltage of power supply is the same as the inverter rated voltage or not with multi-meter. If the power supply has problem, inspect and solve it.

• Inspect whether the three-phase rectify bridge is in good condition or not. If the rectification bridge is burst out, ask for support.

#### 6.2.2 Power supply air switch trips off when power on

• Inspect whether the input power supply is grounded or short circuit. Solve this problem.

• Inspect whether the rectify bridge has been burnt or not. If it is damaged, ask for support.

#### 6.2.3 Motor doesn't run after inverter works

• Inspect if there is balanced three-phase output among U, V, W. If yes, then motor could be damaged, or mechanically locked.

• If the output is unbalanced or lost, the inverter drive board or the output module may be damaged, ask for support..

# **6.2.4** Inverter displays normally when power on, but switch at the input side trips when running

• Inspect whether the output side of inverter is short circuit. If yes, ask for support.

- Inspect whether ground fault exists. If yes, solve it.
- If trip happens occasionally and the distance between motor and inverter is too far, it is recommended to install output AC reactor.
- Inspect whether the output module is burnt or not. If yes, ask for support.

# Chapter 7 EMC

# 7.1 Definition

Electromagnetic compatibility (EMC) describes the ability of electronic and electrical devices or systems to work properly in the electromagnetic environment and not to generate electromagnetic interference that influences other local devices or systems.

# 7.2 Introduction to EMC Standard

According to requirements of China National Standard GB/T12668.3(Equates IEC/EN 61800-3:2004), variable frequency AC drives must meet two aspects of requirements: one is electromagnetic interference generation level, and the other is capability of electromagnetic interference resistance.

8000B series VFD satisfies the requirements of standard IEC/EN 61800-3: 2004(Adjustable speed electrical power drive systems part 3:EMC requirements and specific test methods), which equates China National Standard GB/T12668.3.

# 7.3 EMC Guideline

#### 7.3.1 Harmonic Influence

Higher harmonics of power input may damage the VFD. Thus, in case of applications where power quality is rather poor, it is recommended to install an AC input reactor.

#### 7.3.2 Installation Notices for Electromagnetic Interference

There are two kinds of electromagnetic interference, one is the electromagnetic noise from environment around which interferes the VFD, and the other is emission and harmonic generated by the VFD which interferes other devices.

Installation Notices:

1. Correctly ground VFD and other electric devices.

2. Keep the lines of power input and output of VFD away from signal and control lines, and do not run these two kinds of cables in parallel but in vertical as far as possible.

3. Shield cable is recommended for output power lines of VFD, or the cable can be shielded by steel pipe, and the shields must be grounded correctly; It is recommended to use twisted shield control cable for devices being interfered, and the shields must be grounded correctly.

4. In case of application with long motor cable which is over 100m, an output filter or AC output reactor is needed.

#### 7.3.3 Methods for Handling Surrounding Interference to VFD

Normally electromagnetic interferences to the VFD are generated from large number of devices installed nearby including relays, contactor, or magnetic brakes. If a VFD is in malfunction by interference, it is recommended to use the following methods:

1. Install surge arrestor to the part which generates interference.

2. Install filter to the input of VFD, as details in 8.3.6.

3. It is recommended to use shield cable for control and sensing signals, and cable shields must be grounded correctly.

#### 7.3.4 Methods for Handling VFD Interference to Surrounding Devices

The electromagnetic noises can be classified as two kinds, one is emission, and the other is conduction interference. These two kinds of interferences can make the surrounding devices suffering electromagnetic or electrostatic induction, some will be malfunction due to interference. The following are methods for different cases:

1. Signals of instruments, receiver and sensors for measuring are fairly weak to be interfered easily if they are close to the VFD or in the same control cabinet. It is recommended to solve the problem: Keep away from VFD as far as possible; Do not arrange signal cables running close and parallel to power cables, especially never bundle them up; It is recommended to use shield cable for signal and power transfer, and must be grounded correctly; To the output of VFD, add ferrite beads and make 2~3 coils each (Select the models for suppressing scope of 30~1000MHz); To some worse cases, install an EMC output filter.

2. If the device which is interfered shares the same power source with VFD and results in conducting interference, and the methods above cannot eliminate the interference, an EMC filter should be installed to the power input of VFD (For details refers to 8.3.6).

3. Grounding peripheral devices separately can avoid the interference caused by VFD ground leakage current through common ground.

#### 7.3.5 Leakage Current Handling

There are two types of leakage current in VFD application: one is ground leakage current, and the other is line-to-line leakage current.

1. Factors of ground leakage current

There is distributed capacitance between line conductor and earth ground. The larger the distributed capacitance, the larger ground leakage current is. For reducing the distributed capacitance, it is effective shortening the distance from VFD to motor. The higher the Carrier frequency is, the larger the ground leakage current is. It is effective to reduce ground leakage current by lowering the carrier frequency, but will result in increasing of motor noise. Note: Installing an electric reactor is also an effective method for lowering ground leakage current.

Ground leakage current will increase as the main circuit current increasing, i.e. the larger power the motor, the larger ground leakage current is.

2. Factors of line-to-line leakage current

There is distributed capacitance between line conductors of VFD output cable. If the current through the output cable include high order harmonic current, it may cause syntony which resulting in line-to-line leakage current. In this situation, if a thermal overload relay is employed, it might be caused malfunction.

To prevent malfunction, lower the carrier frequency or install an output reactor. When a VFD has been used, it is recommended to use motor overload protection of VFD instead of employing a thermal overload relay to the motor.

#### 7.3.6 Notice for Installation of EMC Input Filter

1. Usage of an EMC filter must be in strict accordance with its rated specifications. As a filter belongs to Category I apparatus, its metal ground enclosure must be contacted to the ground bus of control cabinet as far as possible in surface, and the continuity of ground conductor must be good, or it will lead to risk of electric shock and also badly affect the effect of EMC.

2. The ground enclosure of EMC filter must be connected to the same common ground bus, or it will badly affect the effect of EMC.

3. The filter must be installed as close as possible to the power input terminals of VFD.

# **Chapter 8 Communication Protocol**

### 8.1 Communication Interface

RS485: asynchronous, half-duplex.

Default: 8-N-1, 9600bps. See FC Group: RS485 Communication Parameters.

# 8.2 Communication Modes

The protocol is modbus protocol. Besides the common register Read/Write operation, it is supplemented with commands of parameters management.

The VFD(AC drive) is a slave in the network. It communicates in point to point master-slave mode. It will not respond to the command sent by the master via broadcast address.

In the case of multi-drive communication or long-distance transmission, connecting a  $100 \sim 120 \Omega$  resistor in parallel with the master signal line will help to enhance the immunity to interference.

# 8.3 Frame Format

8000B series modbus protocol supports only RTU mode. The frame format is illustrated as follows:



Modbus adopts "Big Endian" representation for data frame. This means that when a numerical quantity larger than a byte is transmitted, the most significant byte is sent first.

#### RTU mode

In RTU mode, the modbus minimum idle time between frames should be no less than 3.5 bytes. The checksum adopts CRC-16 method. All data except checksum itself sent will be counted into the calculation. Please refer to section: CRC Check for more information. Note that at least 3.5 bytes of modbus idle time should be kept and the start and end idle time need not be summed up to it.

The table below shows the data frame of reading parameter 0002H (F0.02) from slave node address 1.

| Node addr. | Command | Data addr. |     | Data No. |     | CRC |     |
|------------|---------|------------|-----|----------|-----|-----|-----|
| 01H        | 03H     | 00H        | 02H | 00H      | 01H | 25H | CAH |

The table below shows the reply frame from slave node address 1.

| Node addr. | Command | Byte No. | Data |     | CRC |     |
|------------|---------|----------|------|-----|-----|-----|
| 01H        | 03H     | 02H      | 00H  | 00H | B8H | 44H |

# 8.4 Protocol Function

Different respond delay can be set through drive's parameters to adapt to different needs.

For RTU mode, the respond delay should be no less than 3.5 bytes interval.

The main function of modbus is to read and write parameters. The modbus protocol supports the following commands:

| 03H | Read VFD's function parameter(s) and status data                                    |
|-----|-------------------------------------------------------------------------------------|
| 06H | Write single function parameter or control command or communication settings to VFD |

All drive's function parameters, control command and status data are mapped to modbus R/W data address.

For the data address of VFD's control command, communication settings and

status data, please refer to the following table.

| Parameter Description    | Address | Meaning of value                                                                                                                                                                                                                                                                                                                                     | R/W<br>Feature |  |
|--------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
|                          |         | 0001H: Forward                                                                                                                                                                                                                                                                                                                                       |                |  |
|                          |         | 0002H: Reverse                                                                                                                                                                                                                                                                                                                                       |                |  |
|                          |         | 0003H: JOG forward                                                                                                                                                                                                                                                                                                                                   | W//D           |  |
| Control Command          | 100014  | 0004H: JOG reverse                                                                                                                                                                                                                                                                                                                                   |                |  |
| Control Command          | 100011  | 0005H: Stop                                                                                                                                                                                                                                                                                                                                          | W/K            |  |
|                          |         | 0006H: Coast to stop                                                                                                                                                                                                                                                                                                                                 |                |  |
|                          |         | 0007H: Reset fault                                                                                                                                                                                                                                                                                                                                   |                |  |
|                          |         | 0008H: JOG stop                                                                                                                                                                                                                                                                                                                                      |                |  |
|                          | 1001H   | 0001H: Forward running                                                                                                                                                                                                                                                                                                                               | R              |  |
|                          |         | 0002H: Reverse running                                                                                                                                                                                                                                                                                                                               |                |  |
| VFD status data          |         | 0003H: Standby                                                                                                                                                                                                                                                                                                                                       |                |  |
|                          |         | 0004H: Fault                                                                                                                                                                                                                                                                                                                                         |                |  |
|                          |         | 0005H: LU Status of inverter                                                                                                                                                                                                                                                                                                                         |                |  |
| Communication<br>setting | 2000Н   | Communication Setting Range<br>(-10000~10000)<br>Note: the communication setting is the<br>percentage of the relative value<br>(-100.00%~100.00%). If it is set as frequency<br>source, the value is the percentage of the<br>maximum frequency. If it is set as PID (preset<br>value or feedback value), the value is the<br>percentage of the PID. | W/R            |  |
|                          | 2001H   | PID setting,<br>Range: 0~1000, 1000 means100.0%                                                                                                                                                                                                                                                                                                      | W/R            |  |

|            | 2002H | PID fedback,<br>Range: 0~1000, 1000 means100.0%                   | W/R |
|------------|-------|-------------------------------------------------------------------|-----|
|            | 2003H | Setting value of torque<br>Range: -1000~1000<br>1000 means 100.0% | W/R |
|            | 2004H | Setting value of upper limit frequency<br>(0~Fmax)                | W/R |
|            | 3000H | Output frequency                                                  | R   |
|            | 3001H | Reference frequency                                               | R   |
|            | 3002H | DC Bus voltage                                                    | R   |
|            | 3003H | Output voltage                                                    | R   |
|            | 3004H | Output current                                                    | R   |
|            | 3005H | Rotation speed                                                    | R   |
|            | 3006H | Output power                                                      | R   |
| VED Status | 3007H | Output torque                                                     | R   |
| data       | 3008H | PID preset value                                                  | R   |
|            | 3009H | PID feedback value                                                | R   |
|            | 300AH | Input terminal status                                             | R   |
|            | 300BH | Output terminal status                                            | R   |
|            | 300CH | Input of AVI                                                      | R   |
|            | 300DH | Input of ACI                                                      | R   |
|            | 300EH | Reserved                                                          | R   |
|            | 300FH | Reserved                                                          | R   |
|            | 3010H | Reserved                                                          | R   |

|                           | 3011H | Reserved                      | R |
|---------------------------|-------|-------------------------------|---|
|                           | 3012H | Step No. of PLC or multi-step | R |
|                           | 3013H | Reserved                      | R |
|                           | 3014H | External counter input        | R |
|                           | 3015H | Reserved                      | R |
|                           | 3016H | Reserved                      | R |
| VFD fault info<br>address | 5000H | Fault Code in Hex format      | R |

The above shows the format of the frame. Now we will introduce the modbus command and data structure in details, which is called protocol data unit for simplicity. Also MSB stands for the most significant byte and LSB stands for the least significant byte for the same reason. The description below is data format in RTU mode.

#### Protocol data unit format of reading parameters:

Request format:

| Protocol data unit | Data length(bytes) | Range      |
|--------------------|--------------------|------------|
| Command            | 1                  | 03H        |
| Data Address       | 2                  | 0~FFFFH    |
| Data Number        | 2                  | 0001~0010H |

Note: The maximum number of data can be read in one request is 16 (0010H).

Reply format (success):

| Protocol data unit   | Data length(bytes) | Range         |
|----------------------|--------------------|---------------|
| Command              | 1                  | 03H           |
| Returned byte number | 2                  | 2*Read number |
| Data content         | 2                  |               |

WECON TECHNOLOGY CO., LTD.

If the operation fails, the VFD will reply a message formed by failure command and error code. The failure command is (Command  $\pm 0x80$ ). The error code indicates the reason of the error; see the table below.

| Code | Error                | Error content                                                                                                                                                                                                 |
|------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01H  | Illegal Command      | The command from master cannot be executed. The reason<br>maybe:<br>1. This command is only for new version and this version<br>cannot realize.<br>2. Slave is in fault and cannot execute it.                |
| 02H  | Illegal data address | Some of the operation addresses are invalid or not allowed to access.                                                                                                                                         |
| 03H  | Illegal value        | When there are invalid data in the message framed received by slave.<br>Note: This error code does not indicate the data value to write exceed the range, but indicate the message frame is an illegal frame. |
| 06H  | Slave busy           | VFD is Busy (EEPROM is storing).                                                                                                                                                                              |
| 10H  | Password error       | The password written to the password check address is not the same as the password set by F7.00.                                                                                                              |
| 11H  | Checksum error       | The CRC (RTU mode) check not passed.                                                                                                                                                                          |
| 12H  | Written no allowed   | It only happen in write command, the reason maybe:<br>1. The data to write exceed the range of according parameter.<br>2. The parameter should not be modified now.<br>3. The terminal has already been used. |
| 13H  | System locked        | When password protection take effect and user does not unlock it, write/read the function parameter will return this error.                                                                                   |

#### Protocol data unit format of writing single parameter:

Request format:

| Protocol data unit | Data length(bytes) | Range   |
|--------------------|--------------------|---------|
| Command            | 1                  | 06H     |
| Data Address       | 2                  | 0~FFFFH |
| Written Content    | 2                  | 0~FFFFH |

Reply format (success):

| Protocol data unit | Data length(bytes) | Range   |
|--------------------|--------------------|---------|
| Command            | 1                  | 06H     |
| Data Address       | 2                  | 0~FFFFH |
| Written Content    | 2                  | 0~FFFFH |

If the operation fails, the inverter will reply a message formed by failure command and error code. The failure command is (Command +0x80). The error code indicates the reason of the error.

# 8.5 Note

1. Between frames, the span should not less than 3.5 bytes interval; otherwise, the message will be discarded.

2. Be cautious to modify the parameters of FC group through communication, otherwise may cause the communication interrupted.

3. In the same frame, if the span between two near bytes is more than 1.5 bytes interval, the behind bytes will be assumed as the start of next message so that communication will fail.

# 8.6 CRC Checksum

For higher speed, CRC-16 uses tables. The following are C language source code for CRC-16.

unsigned int crc\_cal\_value(unsigned char \*data\_value,unsigned char data\_length)

# 8.7 Example

RTU mode, read 2 data from 0008H (Parameters F0.08~F0.09)

The request command is:

| START                  | T1-T2-T3-T4 |
|------------------------|-------------|
| NODE ADDRESS           | 01H         |
| COMMAND                | 03H         |
| DATA ADDRESS HIGH BYTE | 00H         |
| DATA ADDRESS LOW BYTE  | 08H         |
| DATA NUMBER HIGH BYTE  | 00H         |
| DATA NUMBER LOW BYTE   | 02H         |
| CRC LOW BYTE           | 45          |
| CRC HIGH BYTE          | С9          |
| END                    | T1-T2-T3-T4 |

The reply is:

| START                | T1-T2-T3-T4 |
|----------------------|-------------|
| NODE ADDRESS         | 01H         |
| COMMAND              | 03H         |
| BYTE NUMBER          | 04H         |
| DATA 0008H HIGH BYTE | 13H         |
| DATA 0008H LOW BYTE  | 88H         |
| DATA 0009H HIGH BYTE | 00H         |
| DATA 0009H LOW BYTE  | 00H         |
| CRC LOW BYTE         | 7E          |
| CRC HIGH BYTE        | 9D          |
| END                  | T1-T2-T3-T4 |

In this example, the VFD's data settings of  $0008H \sim 0009H$  (F0.08~F0.09) is read by upper monitor: Data 0008H = 1388H, which can be transfer to decimal number 5000 that means parameter F0.08 is set as 50.00Hz; While data 0009H = 0000H

which means that F0.09 is set as 0 as running direction is forward.

Note: The above reply is an example, and the exact data may be different according to each separate application.

# 8.8 Data Address Table of Function Code

| F0. 00 | 0  |
|--------|----|
| F0. 01 | 1  |
| F0. 02 | 2  |
| F0. 03 | 3  |
| F0. 04 | 4  |
| F0. 05 | 5  |
| F0. 06 | 6  |
| F0. 07 | 7  |
| F0. 08 | 8  |
| F0. 09 | 9  |
| F0. 10 | 10 |
| F0. 11 | 11 |
| F0. 12 | 12 |
| F0. 13 | 13 |
| F0. 14 | 14 |
| F0. 15 | 15 |
| F0. 16 | 16 |
| F0. 17 | 17 |
| F0. 18 | 18 |
| F0. 19 | 19 |
| F0. 20 | 20 |
| F0. 21 | 21 |
| F0. 22 | 22 |
| F0. 23 | 23 |
| F0. 24 | 24 |
| F0. 25 | 25 |
| F1.00  | 26 |
| F1.01  | 27 |
| F1. 02 | 28 |
| F1.03  | 29 |
| F1.04  | 30 |
| F1.05  | 31 |
| F1.06  | 32 |

| F1.07  | 33 |
|--------|----|
| F1.08  | 34 |
| F1.09  | 35 |
| F1.10  | 36 |
| F1.11  | 37 |
| F1. 12 | 38 |
| F1. 13 | 39 |
| F1.14  | 40 |
| F1.15  | 41 |
| F1. 16 | 42 |
| F1.17  | 43 |
| F1. 18 | 44 |
| F1.19  | 45 |
| F1.20  | 46 |
| F1. 21 | 47 |
| F2.00  | 48 |
| F2. 01 | 49 |
| F2. 02 | 50 |
| F2. 03 | 51 |
| F2. 04 | 52 |
| F2. 05 | 53 |
| F2.06  | 54 |
| F2. 07 | 55 |
| F2. 08 | 56 |
| F2. 09 | 57 |
| F2. 10 | 58 |
| F2. 11 | 59 |
| F2. 12 | 60 |
| F3.00  | 61 |
| F3. 01 | 62 |
| F3. 02 | 63 |
| F3. 03 | 64 |
| F3. 04 | 68 |
|        |    |

| F3. 05 | 66 |
|--------|----|
| F3.06  | 67 |
| F3. 07 | 68 |
| F3. 08 | 69 |
| F3. 09 | 70 |
| F3.10  | 71 |
| F3.11  | 72 |
| F3. 12 | 73 |
| F4.00  | 74 |
| F4. 01 | 75 |
| F4. 02 | 76 |
| F4. 03 | 77 |
| F4. 04 | 78 |
| F4. 05 | 79 |
| F4.06  | 80 |
| F4. 07 | 81 |
| F4. 08 | 82 |
| F4. 09 | 83 |
| F4. 10 | 84 |
| F4. 11 | 85 |
| F4. 12 | 86 |
| F4. 13 | 87 |
| F4. 14 | 88 |
| F4. 15 | 89 |
| F4. 16 | 90 |
| F4. 17 | 91 |
| F5.00  | 92 |
| F5. 01 | 93 |
| F5. 02 | 94 |
| F5.03  | 95 |
| F5. 04 | 96 |
| F5.05  | 97 |
| F5.06  | 98 |

#### WECON TECHNOLOGY CO., LTD.

| F5. 07 | 99  |
|--------|-----|
| F5. 08 | 100 |
| F5. 09 | 101 |
| F5. 10 | 102 |
| F5. 11 | 103 |
| F5. 12 | 104 |
| F5. 13 | 105 |
| F5. 14 | 106 |
| F5. 15 | 107 |
| F5. 16 | 108 |
| F5. 17 | 109 |
| F5. 18 | 110 |
| F5. 19 | 111 |
| F5. 20 | 112 |
| F5. 21 | 113 |
| F5. 22 | 114 |
| F5. 23 | 115 |
| F5. 24 | 116 |
| F5. 25 | 117 |
| F5. 26 | 118 |
| F5. 27 | 119 |
| F5. 28 | 120 |
| F5. 29 | 121 |
| F5. 30 | 122 |
| F5. 31 | 123 |
| F5. 32 | 124 |
| F6. 00 | 125 |
| F6. 01 | 126 |
| F6. 02 | 127 |
| F6. 03 | 128 |
| F6. 04 | 129 |
| F6. 05 | 130 |
| F6.06  | 131 |
| F6. 07 | 132 |
| F6. 08 | 133 |
| F6. 09 | 134 |

| F6. 10 | 135 |
|--------|-----|
| F6. 11 | 136 |
| F6. 12 | 137 |
| F6. 13 | 138 |
| F6. 14 | 139 |
| F6. 15 | 140 |
| F6. 16 | 141 |
| F6. 17 | 142 |
| F6. 18 | 143 |
| F7. 00 | 144 |
| F7. 01 | 145 |
| F7. 02 | 146 |
| F7. 03 | 147 |
| F7. 04 | 148 |
| F7. 05 | 149 |
| F7.06  | 150 |
| F7. 07 | 151 |
| F7. 08 | 152 |
| F7. 09 | 153 |
| F7. 10 | 154 |
| F7. 11 | 155 |
| F7. 12 | 156 |
| F7. 13 | 157 |
| F8. 00 | 158 |
| F8. 01 | 159 |
| F8. 02 | 160 |
| F8. 03 | 161 |
| F8. 04 | 162 |
| F8. 05 | 163 |
| F8.06  | 164 |
| F8. 07 | 165 |
| F8. 08 | 166 |
| F8. 09 | 167 |
| F8. 10 | 168 |
| F8. 11 | 169 |
| F8. 12 | 170 |
|        |     |

| F8. 13 | 171 |
|--------|-----|
| F8. 14 | 172 |
| F8. 15 | 173 |
| F8. 16 | 174 |
| F8. 17 | 175 |
| F8. 18 | 176 |
| F8. 19 | 177 |
| F8. 20 | 178 |
| F8. 21 | 179 |
| F8. 22 | 180 |
| F8. 23 | 181 |
| F8. 24 | 182 |
| F8. 25 | 183 |
| F8. 26 | 184 |
| F8. 27 | 185 |
| F8. 28 | 186 |
| F8. 29 | 187 |
| F9.00  | 188 |
| F9. 01 | 189 |
| F9. 02 | 190 |
| F9. 03 | 191 |
| F9. 04 | 192 |
| F9. 05 | 193 |
| F9.06  | 194 |
| F9. 07 | 195 |
| F9. 08 | 196 |
| F9. 09 | 197 |
| F9. 10 | 198 |
| F9. 11 | 199 |
| F9. 12 | 200 |
| F9. 13 | 201 |
| F9. 14 | 202 |
| F9. 15 | 203 |
| F9. 16 | 204 |
| F9. 17 | 205 |
| F9. 18 | 206 |

#### WECON TECHNOLOGY CO., LTD.

| FA. 00 | 207 |
|--------|-----|
| FA. 01 | 208 |
| FA. 02 | 209 |
| FA. 03 | 210 |
| FA. 04 | 211 |
| FA. 05 | 212 |
| FA. 06 | 213 |
| FA. 07 | 214 |
| FA. 08 | 215 |
| FA. 09 | 216 |
| FA. 10 | 217 |
| FA. 11 | 218 |
| FA. 12 | 219 |
| FA. 13 | 220 |
| FA. 14 | 221 |
| FA. 15 | 222 |
| FA. 16 | 223 |
| FA. 17 | 224 |
| FA. 18 | 225 |
| FA. 19 | 226 |
| FA. 20 | 227 |
| FA. 21 | 228 |
| FB. 00 | 229 |
| FB. 01 | 230 |
| FB. 02 | 231 |
| FB. 03 | 232 |
| FB. 04 | 233 |
| FB. 05 | 234 |
| FB. 06 | 235 |
| FB. 07 | 236 |
| FB. 08 | 237 |
| FB. 09 | 238 |
| FB. 10 | 239 |
| FC. 00 | 240 |
| FC. 01 | 241 |
|        | 040 |

| FC. 03 | 243 |
|--------|-----|
| FC. 04 | 244 |
| FC. 05 | 245 |
| FC. 06 | 246 |
| FD. 00 | 247 |
| FD. 01 | 248 |
| FD. 02 | 249 |
| FD. 03 | 250 |
| FD. 04 | 251 |
| FD. 05 | 252 |
| FD. 06 | 253 |
| FD. 07 | 254 |
| FD. 08 | 255 |
| FD. 09 | 256 |
| FD. 10 | 257 |
| FD. 11 | 258 |
| FD. 12 | 259 |
| FD. 13 | 260 |
| FD. 14 | 261 |
| FD. 15 | 262 |
| FD. 16 | 263 |
| FD. 17 | 264 |
| FD. 18 | 265 |
| FD. 19 | 266 |
| FD. 20 | 267 |
| FD. 21 | 268 |
| FD. 22 | 269 |
| FD. 23 | 270 |
| FD. 24 | 271 |
| FD. 25 | 272 |
| FD. 26 | 273 |
| FD. 27 | 274 |
| FD. 28 | 275 |
| FD. 29 | 276 |
| FD. 30 | 277 |
| FD. 31 | 278 |

| FD. 32 | 279 |
|--------|-----|
| FD. 33 | 280 |
| FD. 34 | 281 |
| FD. 35 | 282 |
| FD. 36 | 283 |
| FD. 37 | 284 |
|        |     |
## WECON Technology Co., Ltd

Addr: 10th Building, Area E, Software Park, Gulou District, Fuzhou, Fujian Province P.R.China Tel: +86-591-87868869 Fax: +86-591-87843899 website: www.we-con.com/en